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In this article, we consider the evolution of weakly coupled IS,
systems of spin-3 nuclei during arbitrary RF irradiation of the I
spins. Exact solutions are presented for the time dependence of the
density operator in terms of its constituent product operator com-
ponents for a complete set of initial states derived from polariza-
tion of either the | or the S spin. The solutions extend the range of
applications that are accessible to the product operator formalism
and its associated vector picture of nuclear spin evolution. This
marriage of quantum mechanics and a literal vector description of
spin dynamics during RF irradiation supports physical intuition
and has led to simple pulses for selective coherence transfer,
among other new applications. The evolution of initial states that
are free of transverse S-spin components can be described by
classical precession of the I-spin components about effective fields
defined by the interaction between the coupling and RF fields.
Although there is no analogue involving classical rotations for the
evolution of initial states composed of S, or S,, a vector description
is still possible, and the solutions completely characterize the
nature of J-coupling modulation during RF pulses. We emphasize
the Cartesian product operator basis in the present treatment, but
the solutions are readily obtained in any other basis that might
prove suitable in analyzing an experiment. For a system of N
coupled spins, standard exact methods involving diagonalization
and multiplication of the 2" x 2" matrices that represent the
system require on the order of (2")® operations to calculate the
system response to a general RF waveform at each point in the
time domain. By contrast, the efficiency of the present method
scales linearly with the number of spins. Since the formalism
presented also accommodates the absence of either RF irradiation
or the coupling, the solutions provide an efficient means of general
pulse sequence simulation, encompassing any combination of
arbitrary RF waveforms, delays, and coherence gradients. © 1999
Academic Press
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INTRODUCTION

compared to time scales fdrcoupling and chemical-shift evolu-
tion. A more complete picture which includes spin evolutior
during RF irradiation might be equally valuable for applications
such as decoupling or selective pulses which currently fall outsic
the purview of this formalism. Recently, we proposed a vectc
model of decoupling that is applicable when the magnitude of tf
effective field seen by the irradiated spins is sufficiently greate
than the coupling strength. The model accurately predicts t
decoupled signal for any initial state of an IS system during
single ideal inversion pulse and is applicable to the analysis
different adiabatic decoupling schem&}. (However, in general,
the effects of lower power RF pulses and phase cycling require
density matrix treatment that, while precise, provides little phys
ical insight in its present form.

In this article, we derive the product operator transforma
tions for a general ,JS, system of weakly coupled, spin-
heteronuclei during arbitrary RF irradiation of the | spins
Selective irradiation of a magnetically equivalent group o
spins in a homonuclear experiment can thus be included in ti
formalism by assigning the label | to the selectively irradiate
spins. The desired product operator form of the solutions aris
naturally in the present work as a result of factoring the
time-dependent density operator into products of the I-spin ar
S-spin angular momentum operators. The coefficients of ind
vidual product operator terms are simple linear combinatior
of the elements fromn( + 1) 2 X 2 matrices, so the
calculations remain efficient even as the number of | and
spins in the system increases. No matrix diagonalization
multiplication of large matrices is required. These are complt
tationally intensive procedures that would increase the numb
of operations in the calculations by about an order of magn
tude for each spin added to the system.

We first consider the evolution of the S-spin magnetization an
associated coherences, assumed, without loss of generality, to
on resonance. The basic formalism is then readily applied in
subsequent section to the evolution of the irradiated I-spin ma

The product operator formalisni,(2 combines a rigorous netization. Examples are provided that illustrate the simple pa
guantum mechanical treatment of nuclear spin evolution with &&rns encoded in the formal solutions, together with recipes fi
intuitive physical picture to describe a broad class of NMR pulsmnstructing the solutions from a basic set of tabulated elemen
sequences in which RF pulses act on a time scale that is shidre Discussion provides details on the computational efficienc
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272 SKINNER AND BENDALL

of the results. Solutions are also considered for various limitiige convention defined irl) for right-hand rotations about any
conditions of the applied RF field strength, followed by an anajeneralw = —+B, so that, for example, an on-resonance R
ysis of the accuracy of solutions obtained using a popular appr@ulse applied along the x axis in the rotating frame produces,
imation method. For constant RF, the solutions provide simgier positivey, a right-hand rotation aboutx. The RF phase
analytical expressions for the time dependence of the densgyalways the phase @ in this convention, whereas the phase
operator as a function of its constituent product operator states thiathe RF field depends on the sign «f The time-dependent
have revealed several new applications for weak RF fididg).( Hamiltonian for anlS, system can be written in the form
Details of this and other work6) that relied on the results

presented here in full, sacrificed previously due to length con- n

straints, are provided throughout the Discussion. We close by H(t) = wlt) -1 + $1,> S, 2]
noting several applications for future work motivated by the i—1

vector picture that can be associated with the individual product

operator states. We have found one reference in the literature hgkre ¢ is 2 times the coupling), in Hertz, andS, is thez
obtains a specific product operator solution for the evolution of @ mponent of théth S spin. Each operator is implicitly a direct
I spins in an IS system during RF of constafihase applied t0 product of the formV' ® V* ® ... ® V* for the (0 + 1)

I (7), but this work and its implications have apparently begyo-dimensional operators from each vector space of the inc

overlooked. vidual |- and S-spin operators. Since operators from the di
ferent spaces commute, we will not necessarily maintain th
EVOLUTION OF S-SPIN COHERENCE particular ordering of the operators in what follows. The pro

jection operator?;” onto the spin-up €) or spin-down ¢)

The basic elements defining theS, problem considered states in theS subspace are written in terms 8f and the
here are contained in Waugh's analysis of the decoupled S-sgjantity operatorE;, as
signal in an IS systen8}], using matrix representations of the
relevant operators. That work can be extended very simply to P:=1E + S 3]
find the product operator components which comprise the Lo
density matrix: properly normalized, the trace of the densité/O that
matrix times a given product operator state projects the density
matrix onto that state. There are 16 product operator basis
states in a spiRdS system, so this procedure is manageable for
two spins. However, to avoid the cumbersome matrices that
arise in larger spin systems, we employ standard Spiper- and
ator algebra. An example can be found in the comprehensive
review of decoupling by Shaka and Keel®y,(which includes S. = 1/2(P{ — Py). (5]
an expanded discussion of Waugh's calculation. These treat-
ments deal exclusively with the observable signal from initidh the vector space of an JSystem, for instance, we represent
in-phase magnetization in an IS system. We consider a cohs,, as3l,(P; — P1)E,E;. Using this particular nomencla-
plete set of initial states for more general spin systems ande for the projection or polarization operators instead of th
calculate the evolution of the total density matrix in terms of itsommonly used alternative®, Sf provides a simple general
constituent product operator states. The procedure shows a&igorithm for writing the Hamiltonian and time development
plicitly and simply which states are generated during the evoperator and reduces the labor of calculation.
lution of the density operator. The formalism is first outlined in The Hamiltonian, recast in terms of these operators, is
some detail for an ISsystem, which provides the basis for the
extensions which follow.

E =P +P/ [4]

H(t) = o t) - | P+ P/
IS, Systems ®) ® ,:Hl ( )

The Hamiltonian. In units of angular frequency, the effec- " n
tive RF field in the rotating f f the | spins i - -
ive ield in the rotating frame of the | spins is + 3121, (P =P T (P +P). 6]

i=1 j#i
o (t) = o ()[cosd(t) X + sind(t) Y]+ 8(1) 2, [1]
Performing the multiplications and grouping like terms yield:s

which encompasses any desired modulation of the amplitu@lénore concise expression. Define
(wy), phase §), and frequency offsetd], where offset is
measured from the center of the I-spin sweep width. We follow wy(t) = w(t) + q$/2 2 [7]
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as the equivalent effective field seen by an uncoupled I-spinadbr or propagatotJ(t,, t.-,) between timeg,_, andt, is
a resonance offsét + q$/2, oriented at an angle, from the simply exp[—i#(t,)At]. In Eq. [11], the direct product of the

Z axis given by n projection operators in each term sets one of the diagon
elements of the resulting’2< 2" projection operator equal to
tan 0, = w/[8 + qF/2]. [8] 1 and all other elements equal to zero. We deﬁrﬁe: w,(ty)
and unit vecto; = w{/|w¢| with components determined by
Then, for example, witm = 2, Eq. [7], together with a rotation angle
Hinon = (we+ | + 2§12 1) PP} B = 3w gAt. [12]
. +p - -pD+
T (@1 +05/21,)(PyP2+ PiP2) The propagator in matrix form is composed of thex22
+ (el — 2912 1,)P{P, elements
= wz | PIPS + @ | (PiP; + PiP;)

Ug(ti, ter) = exd —iwg - 1 At]

+ w_y | PP, 9
®(-2) 172 [°] = cosBt — 2i(@k- 1) sin B
More generally, fom spin4 S operators, the maximum total S _ a{; b'g
spin isn/2, with z component$/2, n/2 — 1), ..., —n/2. ~\—bgr ak [13]
For each producPi* ... P> that appears i, as illustrated
above, the sum of the angular momeqgta= *1 (in units of along the diagonal, where
half-integral spin) associated with the individuf is
ag = cosBt — ik, sin B
n
4= > d, [10] b= —(bk, + id,) sinBY [14]
i=1

are the standard Cayley—Klein parameters for a rotationdly 2
which equals the coefficient ¢f/2. We therefore write about &, and * represents complex conjugation. These pe
rameters are utilized here primarily to simplify the notation an
n are not critical to the solutions. However, their connection
(t) = > oy (t) - | [T P9, [11] rotations is discussed briefly later (see Eq. [43]). Forrthe
1 j=1 2 example, the diagonal elements aig U,, Uy, andU ,,
with multiplicities determined by the number of ways to com-
which merely says that for an |System, the values of, range binen projection operators with total spin quantum numger
from +n to —n, with Aqg, = 2. Eachw,, - | is multiplied by Starting at timet,, the propagator to any later timg is
all possible ways of generating a productrofiifferent pro- obtained by successive application of the propagators for ea
jection operators with total spin equal tp, for a total of 2 of the k intervals, and the block-diagonal structure fen-
terms, as illustrated previously for tlme= 2 case in Eq. [9]. sures that each block will also be a concatenation otifeso
Forn = 3, there are term&., - | P; P, P; and three terms that
for w., involving two P~ and oneP ™. The Hamiltonian for an
IS system written in this form9) consists of the two compar- n
atively simple termsw., - | P;. The basic constructs used in U(ty, to) = > Ut to) [T P, [15]
Eq. [11] and, hence, the simple algorithm described above, Qi ... Ge==1 j=1
appear frequently as elements in the calculations which follow.
Differences in the scalar couplings are readily incorporated Bjnilar to Eq. [11]. For a truly continuous RF waveform, this
changing the component$/2 in eachw,, defined by Eq. [7] expression for the propagator would be an approximation th
to 2L, q;$/2. Thus,w., in a term such ag., - | P/P,P;  can be made increasingly accurate by decreasing the inten
would becomew, + ($, — $, + $3)/22, for example. At. The C-K parameters(t,, t,) and by(t,, t,), which
The time evolution operator.The RF generated by thedescribe an evolution from an initial tintg to a final timet,,
spectrometer is most commonly a digitized approximation ofeae obtained by the recurrence relation given in the Appendi
continuous waveform in which the RF amplitude, phase, amhich uses half the operations required by the fuld 2 matrix
frequency are constant during intervals of fixed length multiplications involved in concatenatingd,(t, t.-,) at suc-
Thus, the Hamiltonian is time-independent at each time  cessive time intervals (see also Ref0)). Thek sets of C-K
kAt, and the exact expression for the time development opgarameters and, hence, the time evolution of the system, &

qi, . . ., On=%
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therefore predetermined by the RF waveform at the start of the Z=(S{P; +P{S;U. 21U,
experiment. We will use the abbreviated notat&grandb,, to o s N
describe either the incremental ford(t, tc-,) or the total +(SiP2 + P1S;)Up2I Uy, [20]

effective propagatot ,(ty, to) in the subspace labeled luy _
when the distinction is clear from the context in which they ai@ give

used.
The density operator. The state of the system at tintds po(t) = —il2[Z2 — Z"]
embodied in the density operator, which evolves from an initial = Im[Z] [21]

statep(t,) according to the relation

For the other initial conditions, the I-spin operator becomes
in the expression foZ. In addition, for initialS, (v = 0), the
termsP;"S,P;” = (3)S that arise in the calculation gfy(t)
give only positive coefficients to produce terms of the formn
Z + Z', resulting in the real part & instead of the imaginary
pv(to) E {S(! ZSylxv ZSnyv ZSyIZ} (V = 01 11 21 31 part

[17] Therefore, for general, the simple algorithm that generates

, ) the equation fop,(t) is (i) construct the terms 21, U, »
composed of transverse S-spin operators and assign theslabg), g=nn—2,...,—(n— 2) and then (ii) multiply each

sequentially to members of the set. We write theomponent o, by all combinations of a sing®’ (i = 1, ... ,n) and

of the I spin ad for (X, Xz, Xs) = (X, y, 2) and defind,, = _ 1" gperatorsP; (j # i) with total angular momentum

2E, giving p(to) = 2S,l, to complete the symmetry of the Selgqual tog. This procedure is described more formally by the
As will be shown in the next section, the set is closed for an @(pression

system in the sense that there is no evolution to any state that
is not a member of the set. Each S-spin operator is a sum

p(t) = U(t, to)p(to U'(t, to). (16]

We consider the set of four initial conditions

2.1 S, which is implicit in the notation. We also employ the ! . !
uéual Jraising and lowering operators Z,0) =2 " Eq 0 [U21,U zqs—z)][siq Il P, [22]
=1L j#i
S| =Sy *iS,, 18
: Y 18] giving

which can be obtained by interchanging the two columr2of o
in the matrix representation. ) = {RG[ZV] v =0 (initial in-phaseS,) 23]

In the calculation ofp,(t), the productUp,(t,) produces Im[Z,] »# 0 (initial 2S1,, coherenck
termsP;"S, = (3)S” andP;"S, = F(i/2)S . The operators
(P;")" in the adjoint operatod " are equal td®;", giving terms The bracketed expressions in Eq. [22] provide, in turn, th
P°P” = 0,SP; =0, andS'P; = S". Thus, the only I-spin and S-spin constituents pf(t).
nonzero terms in Eq. [16] are those containing factors of theThe solution for the density operator can thus be reduced
form PSP, = (3)S  and P;S,P;7 = *(i/2)S". This calculating the general produdtk,2l, U, Using Eq. [13] for
reduces the density operator to an expression analogous tothq. effective propagator in each subspace, these can be
[9], with the product of projection operators in each terrpanded as linear combinations of the Pauli basis def, as
replaced by the sum of unique products in which a siijie
is converted tdS;". As an example using the initial condition

3
v = 2 for the IS case, Ug2l, uf= E a(ﬂ;”mx [24]
n=0

U=PiP;Uyy + (PiP; + P P3)U [19]

+P-P;U to obtain the simple expressions for the expansion coefficier
17 2Y(-2 . . . . .
[o], listed in Table 1 as a function of the indicesq, andr.
p2(to) = 21y(Syy + Sy) Table 2 translates these coefficients to their expressions
Ut = PIPJULZ) + (PP, + PIP;)U(TO) term_s of the C-K parame_ters in Egs. [14] and_[AS]. Detz_iils ar
provided in the Appendix. Although eadld, is a rotation
+ PP, UL, operator, we note that the transformation of each compdnent

of the quantum-mechanical vector operatdn Eq. [24] is a
Picking out the nonzero terms from the produgt,(t,)U" and classical rotation only fog = r. By contrast, the transforma-
using the relatior5 = (S)' results in terms of the form  tion of the identity element) ;,21,,U{, » = UyU{ » that
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TABLE 1 TABLE 2

I3 0 1 2 3 v A(Vq,r) ng,r)
v (214,) (21,) () @)

0 a.ar + beby —asb, + bga,
9 Rl | Im[BEY] i ReBE] i Im[AGY] 1 ab* + beat aa, — bb,
: | ImIAL] Re[B1""] —Im[B{™]  Re[A{] 2 aht — bga’ aga, + byb,
2 —i Re[AP"] Im[B&"] Re[BS")] Im[A&] 3 aat — bb* b, — b,
3 Im{AS"] Re[BS""] —Im[B$"] Re[A§™]

Note.The element?d\ " andB“" of Table 1 are listed as functions of the
Note. Coefficientse %" of the Pauli matrices 12, with 21, equal to the Cayley—Klein parameters defined in Eq. [14] and Eq. [A3], as outlined in th

identity operator, are tabulated for the expansion of the prody2t, U, in  discussion leading to Eq. [A5] in the Appendix. Complex conjugation is

Eq. [24] given the initial conditions denoted lyin Eq. [17]. The expansion denoted by *.

coefficients are written in terms &“” andB“"” defined in Table 2. Details

of the derivation are provided in the Appendix. For applications in the text,

=q- 2
rod Table 3 multiply terms consisting of products ofS-spin

operators, withi = n. The f! with i > n are zero, so the

arises in the calculation @f,(t) starting with initial in-phas&,  solutions forp,(t) become progressively simpler for smalker
is decidedly nonclassical, generating I-spin components whéer an IS system, terms involving,, andS;, are eliminated,
there were previously none. and the coefficients change to the form given in column 2 c

The solution for the density operator is completed using ETjable 3. For an IS system, there are no terms involg8ngnd
[18] for S” and Eq. [3] forP;" to perform the multiplications S,, and the coefficients change to the form given in column
in Eq. [22], keeping only the real terms for initial in-phasef Table 3. The particular argument,, of the functions
magnetization or the imaginary terms for coherencgs.2at depend on the initial condition, denoted by and on the
the start of the RF irradiation. As an illustration, we considglomponent 2., in the product. They are listed in Table 4 for
the solutiorp,(t) that evolves when RF is applied to the | Spingeneral ¢, r) in terms ofA, andB, tabulated earlier in Table
in an IS, system that is initially in the = 0 statepo(to) = Si. 7 For example, the terms involving operat@y, in Eq. [25]
According to Eq. [23].p4(1) = RelZo], and Z, is easily (, _ 3y require(,, of Table 4 and the three functiorig of
constructed by analogy to the,l8xample givenin Eq. [20] for_ o, = Im[By] in column 3 of Table 3. We merely take the
v =2 (see,_ for example,_the text preceding Eq. [22], WhICf?:rms involving 2,, which are written out fully as functions of
formally defines the algorithm). The elements, for general ) _ Re[A] ;nd changd,, 1o I, S 10 S,, and ReP]
(g, r) listed in rowv = 0 of Table 1 determine the component%OOO_lm[Bo] el'he remaining ;fermsxyare gen;arated sin;)ilarly

[, In Z,. Sinceay is real, only terms involvindgs, and S, . ) .
w 0 2 y S ”  using the other elements in row zero of Table 4. Solutions fc

from the productsS’P;", are associated withl2 = E. Since . o . .
theay (j = 1, 2, 3) are imaginary, R&] associates similar the evolution Qf !n|t|al stgtes labeled by indexn Eq. [17] are
constructed similarly using row of Table 4.

terms involvingS,, andS;, with 2I,.. In the interest of brevity,
we write out fully only the terms involving, to obtain

n TABLE 3
polt) = REAPY + 2A8 Y + AT 91 X (S), [25]
- IS IS, IS,
(3D _ A(-1,-3) 1 Qe QeY 4 Q02 QBY 4 200 4 13
+ RdAO AO ] 2 [SlX(SZZ + SSZ) 5 0 QLY _ 02 Q6 _ Q19
+ SZX(Slz + Siz) + S3x(slz + SZZ)] 3 0 0 QeY — 2067 4+ 079
+ REAGY — 2AF Y + AT Note.Solutions for the density operatpy(t) during irradiation of the | spins
in an |,,S, system are provided in Eq. [26in(= 1) and Eq. [38] th > 1) for
X A[S1S::Ss + SuS1:Ss: T S5xS1:Sd] the initial states denoted hyin Eq. [17], which are derived from the S-spin
+ {ZS),l y + . .term$. polarization. The product operator coefficieft§()) in the solution are tab-

ulated in columm. The subscript denotes the number of S-spin operators in
o _ a product. Fom = 1, Table 4 lists the specific argumeifis,, corresponding
Coefficients of the 3,1, terms have the same functional formo terms containind,, in the solution forp,(t). An example illustrating the

shown above for thé&, terms, but are constructed from thegpplication of Table 3 to Eqg. [26] for the specific case of ansistem starting
other elements in row = 0 of Table 1 with the initial stateS, (v = 0) is provided in Eq. [25] and the discussion

Thus. there are levels of product operator terms for an.1S thereafter. Solutions for the other initial conditions are obtained by substitutin
! P p ™S the elements in row of Table 4 for those elements shown in Eq. [25]. The

system, depending on the number of S-spin operators in R tions become progressively simpler for smafiesincef” = 0 fori > n.
product. The functiong{(Q2) listed in rowi, columnn of Arguments tof? for generalm in Eq. [38] are given in Eqs. [34] and [36].
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TABLE 4 so that#(t) = 2, 9. Although the Hamiltonian no longer
exhibits the simple 2< 2 block-diagonal structure of the |S
® 0 L 2 8 systems, the individual¥;, commute among themselves. In
g (S) (2S1.) (2S1,) (2512 addition, all the terms i; commute, since each term contains
0 Re[AS™] —Im[BY"] —Re[BY] —Im[A@"] @ unique product of projection operators, which guarantees tr
1 IM[AL"] Re[B{"] —Im[B{"] Re[A"] the commutator has at least one product of the feri®,” =
2 —Re[Al"] Im[B£*"] Re[B{")] Im[A£”] O for each term. The propagator is still written as in Eq. [15]
3 Im[A{S"] Re[B{*"] —Im[B{*"] Re[A{™] but now
Note.The element$) " of Table 3 ¢ = q — 2) that appear in the Eq. [26]

solution for the density operater,(t) in an IS, system starting with the initial "
condition denoted by in Eq. [17] are listed as functions #*" andB{*"
defined in Table 2. For a simple IS systefd{, ™ is the coefficient of the U(qs>(tk! to) = H Ui (qs>(tk' to). [28]
product operator displayed in the heading for columror general I§ the i=1

coefficients of these same operators are given by the linear combinations in

row 1 of Table 3, with coefficients of the additional product operators that arise . . . .
for n > 1 listed in rows 2 and 3, as illustrated for an, §/stem in Eq. [25]. 1h€e evolution of the density operator, described in Egs. [1€

through [23], follows immediately, with a minor modification
to Eq. [22] forZ,. Define the functiory' (m, g) as the product

The final result for general and initial conditionv can be
written succinctly as

Y(m, q) = H Uk(q)UE(q—Z) [29]
1 n n k=1
P =51 3 | S. 4100 + 2 3 50130
=1 11 and define
n 3
+2 3 S, 1001} +2 3 LS i i
i r=1
« Y(m, x, q) = 2, (Uka2lkxY k-2 I1 UigUlq-2)- [30]
n n k=1 1#k
+2 3 S0 +2 3 Safi)1} .
! K Then
[26]
p
As an example, Eq. [25] was provided to show the explicit " o
correspondence between terms involviiig in Eq. [26] for an 2 . __an:ﬂ Y(m,q) ST[[ P v=0
IS; system starting with initiaB, (v = 0). Z() — =1 g1 i#i
The observed signa{S,(t)) « Tr[Sp,(t)], is proportional ! n n
to f1(Q),0), since only theS? terms have nonzero trace. The > > ~Y(m, x, gy St [ITP" v#0
other terms give the relative proportions of the different co- Li=1 t“"ql;'f'i"l j#i
herences that have evolved. Alternatively, the expansion in Eq. 31]

[24] can be performed just as readily in terms of eithieor the
related spherical tensor basis if these forms of the solution are
required, or the desired transformations between bases caraheé the final solution for the density operator is still given by

performed on the final result. Eq. [23].
Single S-spin. For in-phaseS, at the start of the I-spin
IS, Systems irradiation, po(t) is obtained fromz, in Eq. [31] as

The previous results can easily be extended to obtain the
solutions for an }S, system. We write the& componentofthe  p.(t) = R{S*Y(m, +1)] = R (S, +iS,)Y(m, + 1)].
ith I spin asl; ,.. For theith I spin, Eq. [11] becomes [32]

n According to Eq. [24] defining the general mateig.” listed in
(1) = — > o, | [T P9, [27] Table 1,Y(m, q) is all possible products ah elements from
G - Gn= 1 =1 row zero, so that, most generally,
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° (ar — (q.r) (q,r)ym—1 m-1
Y(m ) =2" Y  [aff? a0, 0] ¢’ =mQig"( Qo)™ — Hmz
m1, ..o, wm=0
[33] 3
X4 > [(m- Z)Q(q” @ngy @n
whereay, is pure real andey (j = 1, 2, 3) is pure imaginary. ki=1

The terms multiplyingS, in Eq. [32] for po(t) must be the

@,y m=2¢ ) (@rn ) @r @r) ) (a.r)
real part of Y(m, +1), so the coefficient o8, = 2S,,, is Q") "HQ QG + Q6]

immediately seen to bexg, )™ = [Re(Ag )] ™. Operators of m-1 m
the form 45,1, 1, result from multiplying two imaginary ele- X[ > Lol s.x]
ments from columns 1 through 3 for agBl system and using p=1 s>p

21,, for the required third real element in agBlsystem. Terms
multiplying iS, must be pure imaginary to produce a real

) (@an — (@nNym-1(y (1) _
result, leading to operators of the forn§2, and, for LS, ¢y’ =2 > [agnHm lﬂil?r +(m=1)
additional operators §l,1,l,. Them = 1 result for an IS k=1

system is given in Eg. [26] as functions of the pure real X (QB%”)"“*ZQ%”QW My,
elements,, in Table 4, wherax,, = —iQq anda;, = Q)
(j = 1, 2, 3). More generally, we can select the terms from ) @ @
Eq. [33] that satisfy the above requirements to define the —3(m-1(m=-2)8 X (QP"QFQL
resulting coefficients of th&, and S, operators in terms of klp=1
general indicesq, r) as + QEIQENQ G0

+ QG QI L2l 3 [36]

AT

e = (061"~ s

so that, combining these results,

m-1 m
(@, @n
X Z ‘Q Q (E Elpxksm (t)_c(l 1SX+C(1 1) [37]
k=1 p=1 s>p
) armt 3 @ . for an |,S system starting with the initial conditions denoted by
oy’ = 20" ]™ X Qg7 — 3 (m— 1)(m - 2) v=0,...,3o0f Eq[17]. The expressions given in Egs. [34]
k=1 and [36] for the coefficients show explicitly which I-spin
3 operators contribute as the number, of | spins increases.
X8 X QEQGIQE 1, s [34] Multiple S-spins. Forn > 1, terms of the forn51I;P; in
klp=1 Eq. [31] result in the same products of S-spin operators as f
the 1S, case. Noting that the terms involving components of th
form=1, 2, 3. total I-spin operator fom | spins are included in the expres-
The density operator resulting from the initial statg 2, sions forc, , andc,, derived above, we can immediately write
with I, = 241, is obtained fronZ; in Eq. [31] as from Eq. [26]
pi(t) = Im[S™Y(m, x;, +1)]. [35] n n
1 n n
B _ puD) = 5oz 3 | S.dfie,) + 2 3 S, )
From Eg. [30] definingY(m, x;, q), there is a factor i=1 j#i

U(+1)2Ii,XjU(T_1) given by rowj of Table 1 for a single | spin,
multiplied by U .,,U{ ,, for the remainingn — 1 spins. This
process is repeated for each | spin contained in the sum over
the individual spins, and the final result must be imaginary.
Compared to row zero of Table 1, the elements which are

+23 Safic, 01} + 25t
k#i

either pure real or pure imaginary in rows 1-3 are inter- +2 2 S fic,,) +2 E Sz fa(ny)]}
changed, so the solutions fpy(t) can be taken from thg,(t) i#i
results by adding all combinations in Eq. [34] that replace a [38]

single element from row zero with one from rojv The
coefficients of theS, and S, operators can then be written inusing the function$;’ from Table 3. Although the proliferation of
general form for this case as products operator terms becomes somewhat unwieldy as the nt
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TABLE 5
cos(sin’d, + cosh,cos B,) + sin’p cos 2B,  sin 2p sin*0,sin’B, — cos 6,sin 28, cos ¢ sin 20,Sin°B, + sin ¢ sin O,sin 28,
sin 2} sin’0,sin’B, + cos ,sin 28, sig(sin’0, + cos0,cos 2B,) + codd cos B,  sin ¢ sin 20,si’B, — €cos ¢ sin B,sin 2B,
€OS ¢ sin 26,sin°B, — sin ¢ sin 6,sin 28, sin ¢ sin 20,sin’B, + cos ¢ sin 6,sin 28, cos'd, + sin‘d,cos 2B,

Note. The matrixR, produces a classical rotation of a vector by angbg about an axis oriented at a polar anglefrom thez axis and azimuthal axig$
from thex axis in the transverse plane. The equivalent effective &&|drising from the interaction between the coupling and the RF fields, as given in E
[7], completely determines the rotation parameters through the relations defined in Egs. [1], [8], and [12].

ber of | and S spins increases, the observable magneti&@oad r = q — 2. This mixing of propagators associated with
coherences &), are readily extracted by inspection. In additiondifferent allowed values for the magnetic quantum number c
this expression is straightforward to program for simulationthe total S-spin angular momentum has no classical analogt
Variations in the scalar couplings are handled as for thedSe, as noted earlier. In the present case, whereq, each term of

with an additional modification of,, for each | spin, leading to the formU | XJUZ, in Eq. [40] can be immediately recognized as
separate versions of Table 4 labeled by the | spin and correspatig- transformation that generates a classical rotation of ea

ing modifications of Eqgs. [34] and [36]. component of the quantum-mechanical vector opetatdrout
w,, and the solutions can be obtained by inspection usin
EVOLUTION OF I-SPIN COHERENCE standard matrix results for a 3D rotation about an arbitrar

axis. The desired rotation matri, is listed in Table 5 in terms
This section provides solutions for the evolution of the I-spiaf the RF phase anglé, the polar anglé, given in Eq. [8],

magnetization and associated coherences involving only I@nd rotation anglgg, of Eq. [12]. The rotated I-spin compo-
gitudinal S, that were not considered in the previous sectionents are then multiplied by the specified products of th
The formalism shows immediately that these can be viewedpiojection operator®, = 3E, = S,,.
classical rotations about effective fields that incorporate theForn = 1, there are product operator terms involving botf
coupling, which allows the solutions to be written down byo S spins and a singl®,, so that
inspection.

2|x, - [R(+1) + R(—l)]'x,
+[Riy — R-pl2IS, (n=1), [41]

IS, Systems

The propagator is still given by Eq. [15], and we consider the

set of six initial states ) .
where the rotationR ., act only on the I-spin operator. An RF

phase¢ = 0 reproduces the solution in Ref))( Forn = 2,
there are rotations R.,, R} and an additional product
S.,S,,, which, forn = 3, expands to includg&,,S;, andS,,S,,
As for the initial conditions listed in Eq. [17] of the previousp|us a term involving three S spinS,,S,,Ss,, together with
section, the members of this set only evolve, for an IS systefgtations R4, Ry} acting on the given I-spin operator. The
to members within the set. The time development of the systggihctionsg”(R) of the specific rotation matrices which give the

p(to) € {l, 21,S,}. (39]

is given by coefficients of these operators are tabulated in Table 6, whe
(as for the functiond{ in Table 3) the superscript is the
p(t) = U(t, to) p(tx) UT(t, to) number of S spins in the system and the subseriptO, . . .,

n gives the number of S spins in the particular product operat
term. The results, again, are of similar structure to Eq. [26], an

n

= X Ugptul [T P, [40]  we obtain, forp;(to) = I,
qi, . . . gn==1 j=1

which follows fromP,P; = 0 and P, S, = =P,. The sums 1 . " . " .
and products that appear in Eq. [40] are parsed in the discu(V = 27 (go(R) +2 E S,z{gl(R) +2 2 S 92(R)
sion surrounding Eq. [11]. Thus, the solution for the density = !
operator again reduces to calculating products of the form n
Ugl, U/, similar to Eq. [22], and we could proceed with the +2 S,ZQS(R)]} - [42]
expansion in terms of the Pauli basis as in the previous section. 1>k

However, Eq. [22] was obtained for initial states involving
transverse S-spin operators, which, in turn, forcethis equation can be used for the initial statg 2 by multi-
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TABLE 6 applications 4, 5), is considered next, followed by a compar-
ison of the exact solutions with those obtained by a frequentl

v IS IS, IS, used approximation.
1 Ry + Rey Rezy+2Re + Ry  Res + 3Rey + 3Ry + Ry Effici |

Rin = Rey  Reg = Rey Rig + Ry = Rey = Reg iciency Issues
2 0 Ria = 2R + Rz Reg = Run = Rey + Rey

The solutions we have obtained for the density operator as
function of time during RF irradiation of the | spins require the
Note. The initial product operator states listed in Eq. [39] evolve durind—K parametersy(ty, to) andby(ty, to) for the simple 2x 2
irradiation of the | spins in an,S, system according to Eq. [42]. These statesubspaced) ,(ty, to) of the propagator from initial time, to
are derived from the I-spin polarization with no prior excitation of the S spinﬁna| timet, = kAt. These can be derived frolmproducts of

The coefficients);(R) of product operators consisting ofS-spin elements are . . . .
tabulated in columm as functions of the classical rotation matrié&sdefined thqu given in Eq' [13] for each of the constant time intervals

in Table 5. The format and usage are similar to Table 3 and the discuss®h l€ngth At betweent, and t,. The algorithm in Eq. [A3]
therein. Application of Table 6 to an IS system is provided in Eq. [41]. To uggenerates the entire set of C—K parameters labelegifbythe

the table for the evolution of the initial states &,, all R, R-;, andR ;inthe  k discrete times in the interval as a sequence of two comple
table are multiplied by-1 as discussed in the text following Eq. [42]. multiplications and one complex addition performetihles. It
requires no operations on large matrices, such as diagonali:
tion or matrix multiplication, which are relatively time-con-
suming procedures of ordaF for anN X N matrix, withN =
2""™ for an |,,S, system of coupled spihnuclei. In the present
.S, Systems method, there ara + 1 subspaces with label ranging from

. . . » ) +n to —n in incrementsAq = 2. The equivalent effective
For isotropicJ-coupling, additional | spins produce no effect;q|qg w, defined in Eq. [7] for each subspace completely

other than increasing the initial polarization of I. The subspaggiarmine the solutions via the ¢ 1) sets of C—K parameters
propagators in Eq. [13] become a product composed ofey give rise to. Thus, the computational load scales linear

individual propagators for each | spin, as in Eq. [28], and thgii, the number of spins in an JSystem rather than as?)°
previous rotations become rotations of the total | spin for eagh, 5 standard density-matrix calculation.

componentl,, = X, I;,. Different scalar couplingsls For larger numbersnf > 1) of | spins, the solutions merely
merely result in separate rotations of individual I-spin COMPYaquire additional linear combinations of this basic set of C—
nents determined by eath . parameters. Moreover, each product operator contribution
the total density operator can be calculated independently
the others. If only the observable signal is of interest, only th
§5 component needs to be calculated. In addition, Table

_S_o far, we have presented a the_oretlcal formalism for O%Pows that each®” andB" required in Table 4 is the sum
taining the product operator evolution of a weakly couple v —
f two terms. Results for = 2, 3 follow from those forv =

.S, system during arbitrary RF irradiation, chosen, witho . . .
loss of generality, to be applied to the | spins. We then applilgv%o’ respectively, by changing the sign of the second terr

this formalism to the initial states of the system that ary ich further improves the efficiency in calculating the full set

. . of solutions. By contrast, the usual matrix-based methods mt
composed solely of operators for the total | and S spins, sinc . : .
. calculate the full density operator and project it onto the

these are the basic states that are generated by pulse sequences
. f ; . obSérvable component. The other product operator compone
employing hard pulses. Exact solutions for the time evqunqn

of the density matrix in terms of its constituent product ope atent in the density matrix represent unnecessary compul

ator states have been provided in Egs. [26], [38], and [42].{|ona_l overhead if t_hey are not deswed,_ although the densi
. . . . . .~ “"matrix can be projected onto all possible product operatc
In the following discussion, we first consider the efficienc

. . . o Xomponents for an,|S, system by trial and error to determine
of the results for performing simulations. This is followed by a | . .
. . . ; .Which components are nonzero, if necessary. In the prese

section on spin dynamics, where we illustrate the connection : . ;
: . o . .~ method, one knows in advance precisely which operators a

with rotations and the basic simplicity of the solutions, Wmm%enerated

them in a form consistent with previous analyses of an '

syg,Fem 8,9. Fu_rt_her |n5|ght into spin dynamics is provided b%pin Dynamics

writing the explicit analytical solutions for the product operator

evolution of an IS system during constant on-resonance irra-EachU, for an intervalAt in Eq. [13] is an operator that

diation of the | spins. We then consider the solutions in theffects a rotation of an I-spin compondnt by angle B =

limit where RF field strength is much greater than the coupling;At about the axiso, according to the relatiotd |, U;. As

strength, which is the relevant domain for many applicationsoted earlier, a classical rotation of this form occurs only fo

The limit of weak RF fields, which has led to several newnitial states involving no transverse S-spin operators. Mor

3 0 0 R — 3Riy + 3Ry — Ry

plying all R, Ri_1), andR_ in Table 6 by—1 which follows
from the relation P;"S,, = =P, that arises in the derivation.

DISCUSSION
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generally, transformations of the for’dquXjUrT arise (withr = component of the total S-spin angular momentum (in units c
g — 2), which have no classical analogue. Successive appialf-integral spin) and satisfy the relatioq - r)/2 = 1,

cation of theU, from timet, to timet, generates the operatorwhich corresponds to the usual selection rule for unit change
U,(tw, to), which represents an equivalent single rotatiothez component. The particular valugs= 1 andr = —1 for

2¢,4(ty) about an axifi,(t,) for eachq. The solutions fop,(t,) an IS system in Eqgs. [44] and [45] give, respectively, the
can be cast in terms of these parameters by inverting thalution for the decoupled signal starting with in-phase mag
expressions foa,(ty, t,) andb,(ty, t,) analogous to those in netizationS, (8) and the solution for the observable signal

EqQ. [14] to obtain, at time,, starting with two-spin coherenceS2, (6)." Increasing the
numbern of S spins in the system increases the number ¢
¢q = cos [Rela,)] My, = —Im(ay)/sin ¢, equivalent effective fieldsv, (Q = +n, ..., —n), which
figx = —Re(by)/sin ¢, Aqy, = —Im(by)/sin ¢, [43] results in a sum of the terms derived from each paijf, @,-»),

as shown in row 1 of Table 3 and illustrated for a single tern
This is the form chosen originally ir(.* Although this approach Of general {, r) in Egs. [44] and [45]. For an LSsystem, the
provides a connection to rotations even when no classical roggcoupled signal is then R&f*”] + Re[Af" ], which can be
tions occur, we emphasize that using the C—K parameters dire@@pstructed from the general result given in Eq. [44]. For a
for simulations is more efficient and is also numerically stable, I§s System, itis Reff”] + 2 Re[Al" V] + Re[A{ " 7]. The
contrast to the inversions given in Eq. [43]. number of unique terms multiplying a given product operato
The observable signal for each of the initial conditions gfomponent thus increases linearly with the number of S spin
Eq. [17] is given in column zero of Table 4 and illustrates thas discussed in the previous section. There are also coefficie
simplicity of the solutions. According to Table 4, tse com- Of product operator states containing more than one S-sp
ponent that evolves during RF irradiation of the | spins in a@perator, which are linear combinations of the previously ca
IS, system starting with an initial stat®, requires the terms culated terms, as listed in rows 2 and 3 of Table 3. Ar
Q8% = Re [AP"]. The particular functions labeled lyandr illustration for an IS system has already been provided in Eq
are given in row 1, column of Table 3. Using Table 2 and Eq.[25].

[A3] for the C—K parameters to calculate®” gives Product operator evolution of IS systems irradiated on res
onance. The product operator transformations given in Table
REAF"] = cosg, cose, + fiy* A,sin ¢, sin ¢, 4 are especially simple for the case of constant amplitud
.. on-resonance irradiation of the | spins in an IS system. In th

— 1+ 0g- 0y cod ¢, — @) case, the offset paramet&in Eq. [1] is equal to zero, so that
2 K ' the effective RF fieldw, is constant in the transverse plane; the

1— g+ A, constant equivalent effective fields., (and unit vectorsw.,

+ — 5 codeqt+ ¢). [44] = A., associated with them) in each subspace of the propag

tors U., have =z components given by Eq. [7], and the
rotation anglesB., = ¢., derived from Eq. [12] increase

. _— . @
The observable signal for an initial stat8§,p, requires;%’, linearly with time. For RF phasé = 0 in Eq. [1], we have

which is given by

_ 2 2112 -
IM[AE"] = —f,, Sin g, COS@, — A, COS @, SIN @, ws1 = [(0g)* + ($12)°] We [46]
— (gy Py, — Ag, Ay y)Sin @ Sin @, ¢ =s0lt=¢ [47]
= — L(Ag— A)esin(oq + @) Ay = oglwd = (48]
LA . Fl2
— 7 (Ag+ Ay sin(eq — @) (Aep), = =5 = £h, [49]
e
- % (ﬁq X ﬁr)x [Coi@q - QDr) - COiQDq + QDr)]-
[45] to give
Similar calculations for the initial conditionsI, and 25,1, a.;=Cos¢ * i, sine
replace thex component of the rotation axes by the respective A
b., = —iA sin¢ [50]

y andz components in Eq. [45].

As discussed earlieg andr are allowed values for the
from Eq. [14]. The necessary products of these C-K param

! The rotation convention and angles defined in Reisagd @) correspond  t€rS are given in Table 2 for the required coefficients of th
to transforminge in the present work to-¢/2. various states in Table 4. The evolution of each initial stat
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denoted by the index in Eq. [17] is given by the correspond- 2|,S, — —f, sin(2¢)21,S, + (A + A7 cos 2p)21,S,

ing row in Table 4. Using the relation; + A? = 1 and the

trigonometric half-angle relations to write both i) and + A, (1 — cos )l (60]
cos(y) in terms of cos(@), we obtain

Results analogous to Egs. [51-60] are obtained for gn 1S
Sc — (A% + hcos 2)S, — AN(1 — cos 2)2S, system by appropriate modification of the parameters in Eq

PO 46-50], as described in the previous section. We next consid
+ N, sin(2¢)2S1 51 [ . .

SiN2¢) 251, (511 the general product operator solutions for the evolution of th
251, — 23, [52] density matrix, as well as the particular solutions above, in th

251, — —A,N,(1 - cos 2p)S, + (A2 + AZcos 20)2S,1, limits of both strong and weak RF fields.

+ fysin(2¢) 251, [53]  strong RF Fields . > $)
281, — —h,sin(2¢)S, — A, sin(2¢)2S], During an adiabatic inversion pulse, the vector model ©
+ cog2¢)2S)1, [54] decoupling 8) would predict very simply that the observable

S-spin signalf{(),,) is independent of in an IS, system,
for the time evolution of the product operator states durir@Ceptfor a larger signal as the number of S spins in the syste
on-resonance RF irradiation of the | spins in an IS system. THireases. Since the evolution of the S spins in the mod
explicit dependence of these transformations on the applied f§Pends only on the orientation of a semiclassical I-spin ve
field and the coupling are obtained from the substitutions AT, and there is only a single | operator in the system, the |-
Egs. [46—49]. interaction is the same for all. The same, but more general,

The transformations of the initial states of Eq. [39], contaironclusion was reached i) for the coefficients of 3,1,
ing no transverse S-spin operators, are obtained similarly us@g@nerated during adiabatic decoupling, based on the results
Table 5 to construct the 3D rotation matrides, utilized in the simulations. However, the equality of the solutions for differ-
example of Eq. [41], which is the application of Table 6 to §Ntn is not limited to adiabatic pulses, and the present solt
simple IS system. As noted in the discussion following E4Ons show explicitly why this is so for any RF pulse of
[42], the transformations of the initial state$,S, are also Sufficiently large amplitude.
obtained from Eq. [41] by making the substitutiéh, — Under the conditionw, > ¢, differences among the, that
—R_,. In other words|,, and 2, S, are interchanged in Eq. determine the solution fas(t) are relatively insignificant. As
[41]. For on-resonance irradiation and RF phase equal to ze#d, illustration to provide a sense of scale, a coupling of 150 H
the same parameters in Eqs. [46—49] can be identified in TaBfd & simple on-resonance pulse of constant amplitude 3 kl
5, where sing., = f,, cosf., = =, andB., = ¢. The givesw,/(2) equal to 3.001, 3.004, and 3.008 kHz tpr 1,
rotations are applied only to the I-spin operators, and e@}chz, and 3, respectively. There is _thus a variation of only a fe\
is represented as the usual unit vector with eleni@mual to tenths of a percent among the different, and all theQ“" of
1 and the other elements equal to zero. Thus, for exampléble 3 are equal to the extent that the effective applied R
operator, picks out the first column oR., with the elements field is sufficiently large. As a result, the coefficiefitfor i >
in each row giving the coefficients df,, 1,, andl,. The 1in Table 3, corresponding to terms in Eq. [26] with more thal

required addition and subtraction Bt:llxj in Eq [41] gives one S-Spin OperatOI’, are zero in the limit of Iarge RF. Thi
simple equivalence of the solutions for all |18reaks down

I, — (A2 + AZcos 2o)l, + A, sin(2¢)21,S, when the RF field becomes small enough that differept
o produced by the coupling among the RF field, I, and S produc
+ NN, (1 = cos 2p)21.S, [55] significant effects. In the example above, a smaller RF ampl
I, — cos2¢)l, + A, sin(2¢)l, tude of 1 kHz gives variations on the order of a pe_rcent fo
o w,/(2) equal to 1.003, 1.011, and 1.025 kHz, and difference
— N, sin(2¢)2L,S, [56] in the solutions for increasing numbers of S spins become mo
|, = —f,sin(2¢)l, + (A% + AZcos 2p)I, apparent. _ _
o For the on-resonance solutions of Egs. [51-60}if> ¢
+ AN,(1 — cos 2p)21,S, [57] thenf, ~ 1, A, =~ 0, and there are no surprises. The I-spir
21,8, — (A2 + AZcos 2p)21,S, + A, sin(2¢)1, operators ir_1 Egs. [55-60] precess about the RF fieI(_JI accordi
to expectation for a standard hard pulse on the | spins. In Ec
+ NN,(1 = cos 2p)l, [58] [51-54], the observable signal is proportional to Becom-
21,8, — cod2¢)21,S, + A, sin(2¢)21,S, ponent. Initial in-phase magnetizati® in Eq. [51] produces

o upon Fourier transformation a large, constant (DC) compone
— N, sin(2¢) 14 [59] proportional th? (i.e., it is decoupled) with small sidebands of
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relative amplituden’/2 due to the cos@ =~ cost) oscil- Then, foro; = 0, we havew., = = $/2 2, ¢., = $t/4 from

lation imposed on the signa8(13. In addition, the intercon- Eqgs. [46] and [47]a =  so that

version of 5,1, and 5,1, given in Egs. [53] and [54] results

in well-known phase anomalies from initial two-spin coher-

ence or antiphase magnetization if the signal is acquired after

the RF has been turned off%). There is no observable signal

in these cases for acquisition with the decoupler on, since h®required. In Tables I-1113), A(m) and¢(m) correspond to

S, component depends dn and is thus vanishingly small. w,, and «, respectively, in the present work. There is ar
However, there are interesting new effects that are evidentdpparent typesetting error in the expression for the line intel

the exact solutions of Eqgs. [51-60] when the RF field strengsity in rows 6 and 9 of Table IIl, which corresponds to the firs

is on the order of the coupling, so thaj is of appreciable term in Eq. [61] above. Fow; = 0, so there is only the

magnitude. These are considered in the next section togetbeupling interaction, Table 11l as written yields a quartet with

with a comparison of the general solutions with previouslgqual line intensities. We also obtaffl + cos «)[3(1 +

S, — 3 cos} $t + cos3 $t [62]

obtained results. coSa) — 2 cosa] for the amplitude of the cog(., — ¢_,) term
not shown in Eq. [61], which corresponds to rows 2 and 3 i
Weak RF Fieldsd, ~ $) Table Ill. For an }S system, we take the square of Eq. [44] anc

As di din th . . h luti ind a constant, DC term of amplitudél + coSa) relative to
s discussed In the previous section, the solutions are dj, expression céa for the corresponding term in row 2 of

fergnt for different numbers of.S spins in the weak-field €a85%aple 1. Both of these expressions give the correct unit am
which is well known from continuous-wave (CW) decoupllngﬁII

ina RE of litud d oh E Ut itude for this frequency component whefy = 0 (« = ),
using 0 consFant amp'|tu € and pnase. XaCt,SO ut|'0n§ t the current solutions accurately predict a minimum value c
the observable signal during CW irradiation starting with in-

S 2 . ! for the intensity whena = /2, i.e., wy = $/2, so the
2 I [l rf ]
phase magnetization in ap3, system are listed in Tables I-ll| centerband S-spin signal in asBlsystem never vanishes.

of Ref. (13) (the roles of | and S are interchanged compared ©0he complete solutions for the density operator obtained he

the usage here). In the present work, both the amplitude and Fg\geal a number of interesting new phenomena at low RF fie
frequency of the observed S-spin si%nal can l3e r?ad"ypbtairﬁ%ngth. In Eq. [53], the observat8emagnetization that evolves
fArom Eq. [44]. For constant RFg, = 20t andnq "N = @q”  from the initial S, state has a DC component proportional tc
@ = COS(H“._ 0:), W'.th ©q a.n'deq defined in Eq.'[7] anq Ea. nA,, with a maximum value equal thwhen w; = $/2, that
(8], respectlvely, which facilitates the comparison with thf:nimics the signal from in-phase magnetization in Eq. [51]. Side
results in Ref. 13). For IS,, the allowed values foq andr bands of relative amplitud,i/2 appear at! due to the
appear as the superscripts in the first row of) Table 3, whi% S(2) = cosf’t) term. The frequency spectrlejm of the side-
gives the sum of terms constructed from RE[’] that com- ¢ depends sensitively on RF field homogeneity, according
prise the solution for the. 3'9”?"- F.Qﬁs’ we havey = 1 r= Eq. [46]. These issues and others are discussed more fully in R
—1, and the observed signal is given by Eq. [44] raised to tlzg) where novel methods are provided for characterizing a d

powerm, as noted .in the discussion f°”°W_i”9 Eq. [33]. coupler channel for the insensitive spins by observing large si
As an example, if we observe the S spin in a8 bystem o\ i the sensitive-spin channel

during irradiation of the | spins, then in the limit; — 0, the For the casew, = $/2, so thath, = A, = 1/\/2, the

solutions mqst yield lines at-J/2 a”‘?' +3J/2 in the ratlo' simplified transformations that can be derived from Egs. [51
1:3:3:12 Cubing Eq. [44] and perfprm!ng the necessary trlgg-4] were obtained independently by experiment prior to th
nometric rgarrangements to obtain simple (ra|§ed to the f'[jséneral quantum mechanical solutions, using a vector pictu
power) cosine functlgns of'the angles, for the time depen- of the relevant spin states. The product operator transform
dence of the §|gqal gives eight terms that lead to the .elght P&Ghs therefore provide the basis for a literal vector interprete
O.f ~frequencies n Table ”.I upon Fourier trans'formanon of theon of spin evolution during RF irradiation. This model, which
signal. Of these eight cosine terms, we conglder only the tyaq proven useful in envisioning new sequences and applic
the}t have nonzero amplltudfz whep the Rl: 'S,tuand,Oﬁ' Dﬁbns, will be detailed in a subsequent publication. For now, w
fining « as the angle betwedn., = &, andf., = &, GIVeS 1 oray note that for, = $/2, Egs. [51] and [53] show that
A.p- Ay = COSa, and we obtain the interconversionS, 2 25,1, occur in 100% yield forp =
w2, i.e., at timet = (\/2J) ', Further analysis shows that the

S, ~2(1 - cosa)[3(1 + cosa) + 2 cosa] effects have a sensitive dependence on resonance offset,
analogous results are evident in Egs. [55—-60] for the evolutic
X code.1+ ¢ 1) +5(1—cosa)’ of states derived from the I-spin polarization. Applications fol

these new selective coherence transfer pulses are discusse
detail in Ref. B).
[61] In the limit where the RF field is zero, we hang= 0,n, =

X cos I, + ¢_;) + {terms - 0 asw; — 0}.
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4] ' ; : : . 4 ' | the | spins of an initial 3,1, configuration, withJ., = 150 Hz

(3). Predictions of the tilted-frame solutiod 1) are overlayed
—_ 2 for comparison. Although the constant-magnitude effectiv
e field of 10 kHz used for the sech/tanh waveform in this
2 01 example is almost two orders of magnitude larger than th
x 5. coupling, so thatv, > ¢, the time-dependent amplitude of the
= actual signal, and therefore the sidebands in the Fourier-trar
B 4 formed spectrum, are an order of magnitude larger than what
g 5 | predicted by the approximation. An increasingly widesprea
i disagreement between the exact and approximate solutions
% -8 more general initial conditions occurs at the lower power level
used in practice to reduce sample heating and produce the m

10 7 efficient adiabatic decoupling, even though the conditiQ>

12 L $is still satisfied. We have shown previously that the intensit

of cycling sidebands from in-phase magnetization is a usef

standard for the efficiency of adiabatic decoupling sequenc

(16, 1. The exact solutions were instrumental in determining
FIG. 1. The signal resulting from 1, at the start of a decoupled decoupling parameters that provide optimal performance und

acquisition is plotted as a function of time during a sech/tanh adiabafractical experimental conditions.

inversion pulse of phase applied to the | spins of an IS systefiCH,l). We observe, also, that the tilted frame prediction for the

Further details can be found in Ref3)( Predictions of the tilted frame tﬂgnal from coherences of the fomszx] during simple on-

approximation (dotted line), as discussed in the text, are compared with cW d l is identicall for RF of an
exact solutions provided here (solid line) and experimen}. (A constant resonance ecoupling 1s identically zero tor bk

magnitude decoupling field of 10 kHz was employed, which is aimost m@Mplitude, which would support the longstanding, but errone
orders of magnitude larger than the couplidgs 150 Hz, illustrating that the OuS, perception that these states produce no useful sigr

tilted frame approximation may not be sufficiently precise, even when thfring RF irradiation of one of the spins. By contrast, the exa
condition w, > § is fulfilled. solutions, which produce reliable results for any RF waveforn
, ) recently inspired several novel applications %) for weak-

1, ande = /4 in Egs. [51-54] to obtain the standard produgfe|q RF. An issue that remains open is the precision of th
operator rules for coupling evolution of an IS system. tilted frame approach for double resonance of the | and S spir
but this is a more computationally intensive problem that i
beyond the scope of the present article.

We refer to tilted frame methods as those which transform
the Hamiltonian to a frame in which the instantaneous direction CONCLUSION
of the effective field 11) or fields, in the case of double
resonancel, 19, defines thez axis. The large off-diagonal The dynamics of weakly coupled$, systems during arbi-
RF terms in the usual rotating-frame Hamiltonian are trangary RF irradiation of the | spins have been considered. Exa
formed to diagonal elements in the tilted frame. Small ofsolutions for the time evolution of the density matrix in terms
diagonal elements in the tilted frame are of magnityde, of its constituent product operator states have been obtained:
relative to the diagonal elements and are typically discardedany initial state that is composed solely of operators for th
diagonalized€ in this approximation. The original problem istotal | and S spins. Solutions for other initial conditions can bt
then easily solved in the tilted frame and transformed back ebtained similarly. We began by deriving the general solutio
the rotating frame, with the effect of the omitted terms eXer IS, systems in Eq. [26]. The coefficients of the various
pected to be negligible in the limib, > $. Applications product operator terms in the solution are simple function:
include solutions for adiabatic decouplinglf and cross po- defined in Table 3, of the arguments listed in Table 4. T
larization/double resonancé&4, 15. The question left open is clarify the structure of the general solution, the evolution of al
When do the terms that were set equal to zero become impk8; system initially in the stat§, is provided in expanded form
tant? Since the approximate solution ignores their effect alto- Eq. [25]. The solutions for,JS, systems in Eq. [38] (initial
gether, there is no reliable measure in this method for quardtates derived from S-spin polarization) and Eq. [42] (initia
fying the accuracy of the solution, and trial-and-errostates derived from I-spin polarization) are simple extensior
comparisons with exact simulations cannot cover all possibdf this basic form.
ities. Furthermore, one is not assured that the approximation idf the amplitude and phase of the RF irradiation are constar
sufficiently accurate unless the exact answer is known.  the solutions reduce to straightforward analytical expressions tt

Figure 1 shows the experimental and theoretical S-spinedict several interesting effects due to the coupling among |,
signal during a sech/tanh inversion pulsexgihase applied to and the RF field. The product operator rules for the evolution ¢

T
0.0 0.2 0.4 06 08 1.0
Time (ms)

Comparison with Tilted Frame Methods
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IS systems during constant, on-resonance RF irradiation of the | spins For each matrix multiplication, only the two first-row

are provided in Egs. [51-60]. A brief overview of applicationglements of the product matrix need to be computed, since t

derived from these predictions has been presented. Solutionsdtrer two elements can be obtained by complex conjugatio

the signals that occur during irradiation of coherences of the form efficient algorithm starts with

251, together with methods for eliminating them, have been

published previouslyg), and the time development of an IS spin aq(ty) = aclv by(ty) = bé, [A1]

system during a weak amplitude square pulse (as in continuous-

wave decoupling) has yielded novel characterization-of-decou i i K duri i

(COD) sequences for calibrating an insensitive I-spin channelpgsrijeglnle_déziq! 124 ] {E;eri(aaﬁiin;r%aﬂg?sng edmenal

observing large signals from these same coherences with tge . ’

S-spin channel4). Applications for selective NMR of large K K
. : . a b

molecules using newJ“pulses” derived from the solutions have U (ty, ti_1)Uq(ty_1, to) = ( —pk« ak*>

also been propose#&)( The full details of those calculations can q d

be found here. The time to compute a given product operator ag(t-1)  bglte-q)

component (i.e., the number of floating point operations) for a X (—b’;(tk,l) a’;(tk,l)) [A2]

general RF waveform delivered in a series of fixed increments

scales linearly with the number of spin, in the system. By then give

comparison, the computation time of simulations which require

matrix d|§g0nal_|z_at|on or r_nultl_phcatlon of Iarge matrices is of a,(t) = ag ag(te 1) — b(‘; b (te 1)

order (2)%. Additional efficiencies are noted in the correspond- .

ingly entitled section of the Discussion. We also showed that = COS@q — Mgz SIN¢@q

results obtained using a tilted frame approximation may not be " o

sufficiently precise, even though the conditions> $ employed by(t) = ag ba(ti-1) + bg ag(te-1)

in its derivation is satisfied. = —(fgy + ifg )sin @, [A3]

We close by mentioning several areas for future research. The
exact product operator evolution of the density matrix during R, the rotation operatou ,(t,, to) in terms of the equivalent

irradiation of one nuclear species provides a detailed physi¢§)<',a,1]g|e rotation 2,(t,) about the axish(t,) for eachq, as
picture of J-coupling modulation during RF pulses that has N@{efined in Eq. [4';]. ‘

been available previously, and this will be described at a later date.

The Cartesian product operator basis employed here is eagifpansion Coefficients'?” in Eq. [24]

transformed to any alternate basis that might prove advantageous ) ) . ) .

in analyzing an experiment (see, for exampld) @nd references The solution for the density matrix in terms of its constituen
therein), so that the present results can be extended to inclffRdUCt operator states was obtained by expanding the produ
analysis of coherence pathway®(20 generated by completely Ye2!xUr (v =0, ..., 3) adinear combinations of the I-spin
general RF waveforms. Since the formalism presented herePRErators

equally valid in the absence of either RF irradiation or the cou-

pling, the solutions encompass any combination of arbitrary RF 2. = <1 0) 2] = (0 1)
waveforms, delays, and coherence gradients to provide a general . 01 ) 10
method for efficient pulse sequence simulation. 0 —i 1 0
2|y:<i 0) 2IZ=<0 _1> [A4]
APPENDIX

in the standard matrix representation. Using Eq. [13] or Ec
Algorithm for Generating the Cayley—Klein Parameters [A2] for the matrix representation of the rotation operatqrin

. . o the subspace, denoted by of the total propagator produces
The evolution of the density operator from an initial titge results of the form

to a final timet, is determined by the time-evolution operator

U(t,, to), which is composed of the individual rotation oper-

atorsU ((t, to) in each subspace according to Eq. [15]. The Ug2l, Ul = <_A|§* 2’(*)) U21,U! = <Qi _Bpl\*>
solution for the density operator has been compiled in Tables o o ! !
2—-4 in terms of the C-K parameteag(t,) andb,(t,). These + . A B + (As Bs
parameters are obtained by successive application of the rotate2hyUr =~ ( -B% A’E) Ug2lUr = (B*; —A’§>’
tion operatordJ (t, ty_,) defined in Eq. [13] for each of tHe [A5]
intervals of lengthAt between the initial and final times, as
derived from the time-independent Hamiltonian for each intewith the element#\, andB, listed in Table 2 in terms of the
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appropriate Cayley—Klein parameters and indicgsrj). An 6.
arbitrary 2X 2 matrix

M=<é o) (A6 &

9.
can be expanded as

10.

M= A(l, + 1)+ B, +ily) + C(,—ily) + D(,,—1,)

M. R. Bendall and T. E. Skinner, Coherence sidebands in adiabatic
decoupling, J. Magn. Reson. 129, 30-34 (1997).

. R. Bazzo and J. Boyd, Pulse shaping and selective excitation. The

effect of scalar coupling, J. Magn. Reson. 79, 568-576 (1988).

J. S. Waugh, Theory of broadband spin decoupling, J. Magn.
Reson. 50, 30-49 (1982).

A. J. Shaka and J. Keeler, Broadband spin decoupling in isotropic
liquids, Prog. NMR Spectrosc. 19, 47-129 (1987).

A. J. Shaka, Composite pulses for ultra-broadband spin inversion,
Chem. Phys. Lett. 120, 201-205 (1985).

11. C.Zwabhlen, S. J. F. Vincent, and L. E. Kay, Analytical description of

=(A+D)l,+ (B+C)l,+i(B—C)l,+ (A—D)I,
[A7]
For the matrices of Eq. [A5], we write + w* = 2 Refw) and

w — w* = 2i Im(w) for complexw to obtain the expressions13-

listed in Table 1. AlternativelyiV can be expanded in terms of

any other suitable basis, resulting in corresponding modificg;

tions to the elements in Table 1.
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