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In this article, we consider the evolution of weakly coupled ImSn

ystems of spin-1
2 nuclei during arbitrary RF irradiation of the I

pins. Exact solutions are presented for the time dependence of the
ensity operator in terms of its constituent product operator com-
onents for a complete set of initial states derived from polariza-
ion of either the I or the S spin. The solutions extend the range of
pplications that are accessible to the product operator formalism
nd its associated vector picture of nuclear spin evolution. This
arriage of quantum mechanics and a literal vector description of

pin dynamics during RF irradiation supports physical intuition
nd has led to simple pulses for selective coherence transfer,
mong other new applications. The evolution of initial states that
re free of transverse S-spin components can be described by
lassical precession of the I-spin components about effective fields
efined by the interaction between the coupling and RF fields.
lthough there is no analogue involving classical rotations for the

volution of initial states composed of Sx or Sy, a vector description
s still possible, and the solutions completely characterize the
ature of J-coupling modulation during RF pulses. We emphasize
he Cartesian product operator basis in the present treatment, but
he solutions are readily obtained in any other basis that might
rove suitable in analyzing an experiment. For a system of N
oupled spins, standard exact methods involving diagonalization
nd multiplication of the 2N 3 2N matrices that represent the
ystem require on the order of (2N)3 operations to calculate the
ystem response to a general RF waveform at each point in the
ime domain. By contrast, the efficiency of the present method
cales linearly with the number of spins. Since the formalism
resented also accommodates the absence of either RF irradiation
r the coupling, the solutions provide an efficient means of general
ulse sequence simulation, encompassing any combination of
rbitrary RF waveforms, delays, and coherence gradients. © 1999

cademic Press

Key Words: product operators; radiofrequency; analytical solu-
ions; spin systems; simulations.

INTRODUCTION

The product operator formalism (1, 2) combines a rigorou
uantum mechanical treatment of nuclear spin evolution wit

ntuitive physical picture to describe a broad class of NMR p
equences in which RF pulses act on a time scale that is
 shT
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n
e
ort

ompared to time scales forJ-coupling and chemical-shift evol
ion. A more complete picture which includes spin evolu
uring RF irradiation might be equally valuable for applicati
uch as decoupling or selective pulses which currently fall ou
he purview of this formalism. Recently, we proposed a ve
odel of decoupling that is applicable when the magnitude o
ffective field seen by the irradiated spins is sufficiently gre

han the coupling strength. The model accurately predict
ecoupled signal for any initial state of an IS system durin
ingle ideal inversion pulse and is applicable to the analys
ifferent adiabatic decoupling schemes (3). However, in genera

he effects of lower power RF pulses and phase cycling requ
ensity matrix treatment that, while precise, provides little p

cal insight in its present form.
In this article, we derive the product operator transfor

ions for a general ImSn system of weakly coupled, spin12
eteronuclei during arbitrary RF irradiation of the I sp
elective irradiation of a magnetically equivalent group
pins in a homonuclear experiment can thus be included i
ormalism by assigning the label I to the selectively irradia
pins. The desired product operator form of the solutions a
aturally in the present work as a result of factoring

ime-dependent density operator into products of the I-spin
-spin angular momentum operators. The coefficients of
idual product operator terms are simple linear combina
f the elements from (n 1 1) 2 3 2 matrices, so th
alculations remain efficient even as the number of I an
pins in the system increases. No matrix diagonalizatio
ultiplication of large matrices is required. These are com

ationally intensive procedures that would increase the nu
f operations in the calculations by about an order of ma

ude for each spin added to the system.
We first consider the evolution of the S-spin magnetization

ssociated coherences, assumed, without loss of generality
n resonance. The basic formalism is then readily applied
ubsequent section to the evolution of the irradiated I-spin
etization. Examples are provided that illustrate the simple

erns encoded in the formal solutions, together with recipe
onstructing the solutions from a basic set of tabulated elem

he Discussion provides details on the computational efficiency

1090-7807/99 $30.00
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272 SKINNER AND BENDALL
f the results. Solutions are also considered for various lim
onditions of the applied RF field strength, followed by an a
sis of the accuracy of solutions obtained using a popular ap
mation method. For constant RF, the solutions provide si
nalytical expressions for the time dependence of the de
perator as a function of its constituent product operator state
ave revealed several new applications for weak RF fields (4, 5).
etails of this and other work (6) that relied on the resul
resented here in full, sacrificed previously due to length
traints, are provided throughout the Discussion. We clos
oting several applications for future work motivated by
ector picture that can be associated with the individual pro
perator states. We have found one reference in the literatur
btains a specific product operator solution for the evolution o
spins in an IS system during RF of constantx-phase applied t
(7), but this work and its implications have apparently b
verlooked.

EVOLUTION OF S-SPIN COHERENCE

The basic elements defining the ImSn problem considere
ere are contained in Waugh’s analysis of the decoupled S
ignal in an IS system (8), using matrix representations of t
elevant operators. That work can be extended very simp
nd the product operator components which comprise
ensity matrix: properly normalized, the trace of the den
atrix times a given product operator state projects the de
atrix onto that state. There are 16 product operator

tates in a spin-1
2 IS system, so this procedure is manageabl

wo spins. However, to avoid the cumbersome matrices
rise in larger spin systems, we employ standard spin-1

2 oper-
tor algebra. An example can be found in the comprehe
eview of decoupling by Shaka and Keeler (9), which includes
n expanded discussion of Waugh’s calculation. These
ents deal exclusively with the observable signal from in

n-phase magnetization in an IS system. We consider a
lete set of initial states for more general spin systems
alculate the evolution of the total density matrix in terms o
onstituent product operator states. The procedure show
licitly and simply which states are generated during the

ution of the density operator. The formalism is first outline
ome detail for an ISn system, which provides the basis for
xtensions which follow.

Sn Systems

The Hamiltonian. In units of angular frequency, the effe
ive RF field in the rotating frame of the I spins is

ve~t! 5 v rf~t!@cosf~t! x̂ 1 sin f~t! ŷ# 1 d~t! ẑ, [1]

hich encompasses any desired modulation of the amp
vrf), phase (f), and frequency offset (d), where offset is
easured from the center of the I-spin sweep width. We fo
g
l-
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he convention defined in (1) for right-hand rotations about a
eneralv 5 2gB, so that, for example, an on-resonance
ulse applied along the1x axis in the rotating frame produce

or positiveg, a right-hand rotation about2x. The RF phasef
s always the phase ofvrf in this convention, whereas the pha
f the RF field depends on the sign ofg. The time-depende
amiltonian for anISn system can be written in the form

*~t! 5 ve~t! z I 1 )I z O
i51

n

Siz, [2]

here) is 2p times the coupling,J, in Hertz, andSiz is thez
omponent of thei th S spin. Each operator is implicitly a dire
roduct of the formVI R VS1 R . . . R VSn for the (n 1 1)

wo-dimensional operators from each vector space of the
idual I- and S-spin operators. Since operators from the
erent spaces commute, we will not necessarily maintain
articular ordering of the operators in what follows. The p

ection operatorsPi
6 onto the spin-up (1) or spin-down (2)

tates in theSi subspace are written in terms ofSiz and the
dentity operator,Ei , as

Pi
6 5 1

2Ei 6 Siz, [3]

o that

Ei 5 Pi
1 1 Pi

2 [4]

nd

Siz 5 1/ 2~Pi
1 2 Pi

2!. [5]

n the vector space of an IS3 system, for instance, we repres
zS1z as 1

2I z(P1
1 2 P1

2) E2E3. Using this particular nomencl
ure for the projection or polarization operators instead o
ommonly used alternativeSi

a, Si
b provides a simple gener

lgorithm for writing the Hamiltonian and time developm
perator and reduces the labor of calculation.
The Hamiltonian, recast in terms of these operators, is

*~t! 5 ve~t! z I P
i51

n

~Pi
1 1 Pi

2!

1 )/ 2 I z O
i51

n

~Pi
1 2 Pi

2! P
jÞi

n

~Pj
1 1 Pj

2!. [6]

erforming the multiplications and grouping like terms yie
more concise expression. Define

v ~t! 5 v ~t! 1 q)/ 2 ẑ [7]
q e
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273PRODUCT OPERATOR EVOLUTION DURING RF PULSES
s the equivalent effective field seen by an uncoupled I-sp
resonance offsetd 1 q)/ 2, oriented at an angleu q from the
axis given by

tan uq 5 v rf / @d 1 q)/ 2#. [8]

hen, for example, withn 5 2,

*~n52! 5 ~ve z I 1 2)/ 2 I z! P1
1P2

1

1 ~ve z I 1 0)/ 2 I z!~P1
1P2

21 P1
2P2

1!

1 ~ve z I 2 2)/ 2 I z! P1
2P2

2

5 v~12! z I P1
1P2

1 1 v~0! z I ~P1
1P2

2 1 P1
2P2

1!

1 v~22! z I P1
2P2

2. [9]

ore generally, forn spin-12 S operators, the maximum tota
pin isn/ 2, with z componentsn/ 2, (n/ 2 2 1), . . . , 2n/ 2.
or each productP1

q1 . . . Pn
qn that appears in*, as illustrated

bove, the sum of the angular momentaqi 5 61 (in units of
alf-integral spin) associated with the individualPi

6 is

qs 5 O
i51

n

qi, [10]

hich equals the coefficient of)/2. We therefore write

*~t! 5 O
q1, . . . , qn561

vqs
~t! z I P

j51

n

P j
qj, [11]

hich merely says that for an ISn system, the values ofqs range
rom 1n to 2n, with Dqs 5 2. Eachvqs z I is multiplied by
ll possible ways of generating a product ofn different pro-

ection operators with total spin equal toqs, for a total of 2n

erms, as illustrated previously for then 5 2 case in Eq. [9]
or n 5 3, there are termsv63 z I P1

6P2
6P3

6 and three term
or v61 involving twoP6 and oneP7. The Hamiltonian for a
S system written in this form (9) consists of the two compa
tively simple termsv61 z I P1

6. The basic constructs used
q. [11] and, hence, the simple algorithm described ab
ppear frequently as elements in the calculations which fo
ifferences in the scalar couplings are readily incorporate
hanging the componentqs)/ 2 in eachvqs defined by Eq. [7
o ¥ j51

n qj) j/2. Thus,v11 in a term such asv11 z I P1
1P2

2P3
1

ould becomeve 1 ()1 2 )2 1 )3)/2 ẑ, for example.

The time evolution operator.The RF generated by th
pectrometer is most commonly a digitized approximation
ontinuous waveform in which the RF amplitude, phase,
requency are constant during intervals of fixed lengthDt.
hus, the Hamiltonian is time-independent at each timet k 5
Dt, and the exact expression for the time development o
at

e,
.
y

a
d

r-

tor or propagatorU(t k, t k21) between timest k21 and t k is
imply exp[2i*(t k)Dt]. In Eq. [11], the direct product of th
projection operators in each term sets one of the diag

lements of the resulting 2n 3 2n projection operator equal
and all other elements equal to zero. We definevq

k 5 vq(t k)
nd unit vectorv̂q

k 5 vq
k/uv q

ku with components determined
q. [7], together with a rotation angle

b q
k 5 1

2v q
kDt. [12]

he propagator in matrix form is composed of the 23 2
lements

Uq~tk, tk21! 5 exp@2iv q
k ? I Dt#

5 cosb q
k 2 2i ~v̂ q

k z I ! sin b q
k

5 S aq
k bq

k

2bq
k* aq

k* D [13]

long the diagonal, where

aq
k 5 cosb q

k 2 i v̂ q,z
k sin b q

k

bq
k 5 2~v̂ q,y

k 1 i v̂ q, x
k ! sin b q

k [14]

re the standard Cayley–Klein parameters for a rotation byb q
k

bout v̂q
k, and * represents complex conjugation. These

ameters are utilized here primarily to simplify the notation
re not critical to the solutions. However, their connectio
otations is discussed briefly later (see Eq. [43]). For then 5

example, the diagonal elements areU 2, U 0, U 0, andU22,
ith multiplicities determined by the number of ways to co
inen projection operators with total spin quantum numbeq.
tarting at timet 0, the propagator to any later timet k is
btained by successive application of the propagators for
f the k intervals, and the block-diagonal structure ofU en-
ures that each block will also be a concatenation of theUq, so
hat

U~tk, t0! 5 O
q1, . . . ,qn561

Uqs
~tk, t0! P

j51

n

P j
qj, [15]

imilar to Eq. [11]. For a truly continuous RF waveform, t
xpression for the propagator would be an approximation
an be made increasingly accurate by decreasing the in
t. The C–K parametersaq(t k, t 0) and bq(t k, t 0), which
escribe an evolution from an initial timet 0 to a final timet k,
re obtained by the recurrence relation given in the Appe
hich uses half the operations required by the full 23 2 matrix
ultiplications involved in concatenatingUq(t k, t k21) at suc-

essive time intervals (see also Ref. (10)). Thek sets of C–K
arameters and, hence, the time evolution of the system
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274 SKINNER AND BENDALL
herefore predetermined by the RF waveform at the start o
xperiment. We will use the abbreviated notationaq andbq to
escribe either the incremental formUq(t k, t k21) or the tota
ffective propagatorUq(t k, t 0) in the subspace labeled byq
hen the distinction is clear from the context in which they
sed.

The density operator. The state of the system at timet is
mbodied in the density operator, which evolves from an in
tater(t 0) according to the relation

r~t! 5 U~t, t0!r~t0!U
†~t, t0!. [16]

e consider the set of four initial conditions

rn~t0! [ $Sx, 2SyI x, 2SyI y, 2SyI z% ~n 5 0, 1, 2, 3!,

[17]

omposed of transverse S-spin operators and assign the ln
equentially to members of the set. We write thexj componen
f the I spin asI xj for ( x1, x2, x3) 8 ( x, y, z) and defineI x0 5
E, giving r 0(t 0) 5 2SxI x0 to complete the symmetry of the s
s will be shown in the next section, the set is closed for a
ystem in the sense that there is no evolution to any stat
s not a member of the set. Each S-spin operator is a

j51
n Sj , which is implicit in the notation. We also employ t
sual raising and lowering operators

Sj
6 5 Sjx 6 iSjy, [18]

hich can be obtained by interchanging the two columns oPj
6

n the matrix representation.
In the calculation ofr n(t), the productUr n(t 0) produces

ermsPj
6Sjx 5 (1

2)Sj
6 andPj

6Sjy 5 7(i / 2)Sj
6. The operator

Pj
6) † in the adjoint operatorU † are equal toPj

6, giving terms
j
6Pj

7 5 0, Sj
6Pj

6 5 0, andSj
6Pj

7 5 Sj
6. Thus, the only

onzero terms in Eq. [16] are those containing factors o
orm Pj

6SjxPj
7 5 (1

2)Sj
6 and Pj

6SjyPj
7 5 7(i / 2)Sj

6. This
educes the density operator to an expression analogous
9], with the product of projection operators in each te
eplaced by the sum of unique products in which a singlePj

6

s converted toSj
6. As an example using the initial conditi

5 2 for the IS2 case,

U 5 P1
1P2

1U ~12! 1 ~P1
1P2

2 1 P1
2P2

1!U ~0! [19]

1 P1
2P2

2U ~22!

r2~t0! 5 2I y~S1y 1 S2y!

U † 5 P1
1P2

1U ~12!
† 1 ~P1

1P2
2 1 P1

2P2
1!U ~0!

†

1 P1
2P2

2U ~22!
† .

icking out the nonzero terms from the productUr 2(t 0)U
† and

sing the relationS2 1 †
5 (S ) results in terms of the form
e

e

l

el

S
at
m

e

Eq.

Z 5 ~S1
1P2

1 1 P1
1S2

1!U ~12!2I yU ~0!
†

1 ~S1
1P2

2 1 P1
2S2

1!U ~0!2I yU ~22!
† , [20]

o give

r2~t! 5 2i / 2@Z 2 Z†#

5 Im@Z#. [21]

or the other initial conditions, the I-spin operator becomeI xn

n the expression forZ. In addition, for initialSx (n 5 0), the
ermsPj

6SjxPj
7 5 (1

2)Sj
6 that arise in the calculation ofr 0(t)

ive only positive coefficients to produce terms of the fo
1 Z†, resulting in the real part ofZ instead of the imaginar

art.
Therefore, for generaln, the simple algorithm that genera

he equation forr n(t) is (i) construct the terms U(q)2I xn
U(q22)

†

or q 5 n, n 2 2, . . . , 2(n 2 2) and then (ii) multiply eac
erm by all combinations of a singleSi

1 (i 5 1, . . . , n) and
2 1 operatorsPj

6 ( j Þ i ) with total angular momentu
qual toq. This procedure is described more formally by
xpression

Zn~t! 5 O
i51

n O
q1, . . . , qn561

qiÞ21

@U ~qs!2I xn
U ~qs22!

† #@Si
qi P

jÞi

n

P j
qj#, [22]

iving

rn~t! 5 HRe@Zn# n 5 0 ~initial in-phaseSx!
Im@Zn# n Þ 0 ~initial 2SyI xn

coherence!. [23]

he bracketed expressions in Eq. [22] provide, in turn,
-spin and S-spin constituents ofr n(t).

The solution for the density operator can thus be reduc
alculating the general productsUq2I xn

U r
†. Using Eq. [13] for

he effective propagator in each subspace, these can b
anded as linear combinations of the Pauli basis set, 2I xm

, as

Uq2I xn
U r

† 5 O
m50

3

a nm
~q,r !2I xm

[24]

o obtain the simple expressions for the expansion coeffic
a] m listed in Table 1 as a function of the indicesn, q, andr .
able 2 translates these coefficients to their expressio

erms of the C–K parameters in Eqs. [14] and [A3]. Details
rovided in the Appendix. Although eachUq is a rotation
perator, we note that the transformation of each componeI xj

f the quantum-mechanical vector operatorI in Eq. [24] is a
lassical rotation only forq 5 r . By contrast, the transform
ion of the identity elementU 2I U † 5 U U † that
(q) x0 (q22) (q) (q22)
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275PRODUCT OPERATOR EVOLUTION DURING RF PULSES
rises in the calculation ofr 0(t) starting with initial in-phaseSx

s decidedly nonclassical, generating I-spin components w
here were previously none.

The solution for the density operator is completed using
18] for Si

1 and Eq. [3] forPj
6 to perform the multiplication

n Eq. [22], keeping only the real terms for initial in-pha
agnetization or the imaginary terms for coherences 2SyI xj at

he start of the RF irradiation. As an illustration, we cons
he solutionr n(t) that evolves when RF is applied to the I sp
n an IS3 system that is initially in then 5 0 state,r 0(t 0) 5 Sx.
ccording to Eq. [23],r 0(t) 5 Re[Z0], and Z0 is easily
onstructed by analogy to the IS2 example given in Eq. [20] fo
5 2 (see, for example, the text preceding Eq. [22], wh

ormally defines the algorithm). The elementsa0m for genera
q, r ) listed in rown 5 0 of Table 1 determine the compone
xm

in Z0. Sincea00 is real, only terms involvingSix and Sjz,
rom the productsSi

1Pj
6, are associated with 2I x0 5 E. Since

hea 0j ( j 5 1, 2, 3) are imaginary, Re[Z0] associates simila
erms involvingSiy andSjz with 2I xj. In the interest of brevity
e write out fully only the terms involvingSix to obtain

r0~t! } Re@A0
~3,1! 1 2A0

~1,21! 1 A0
~21,23!# O

i51

n

~Si!x [25]

1 Re@A0
~3,1! 2 A0

~21,23!# 2 @S1x~S2z 1 S3z!

1 S2x~S1z 1 S3z! 1 S3x~S1z 1 S2z!#

1 Re@A0
~3,1! 2 2A0

~1,21! 1 A0
~21,23!#

3 4@S1xS2zS3z 1 S2xS1zS3z 1 S3xS1zS2z#

1 $2SyI xj
1 . . .terms%.

oefficients of the 2SyI xj terms have the same functional fo
hown above for theSx terms, but are constructed from t
ther elements in rown 5 0 of Table 1.
Thus, there aren levels of product operator terms for ann

ystem, depending on the number of S-spin operators i
roduct. The functionsf n

TABLE 1

0
(2I x0)

1
(2I x)

2
(2I y)

3
(2I z)

Re[A0
(q,r )] i Im[B0

(q,r )] i Re[B0
(q,r )] i Im[A0

(q,r )]
i Im[A1

(q,r )] Re[B1
(q,r )] 2Im[B1

(q,r )] Re[A1
(q,r )]

2i Re[A2
(q,r )] Im[ B2

(q,r )] Re[B2
(q,r )] Im[ A2

(q,r )]
i Im[A3

(q,r )] Re[B3
(q,r )] 2Im[B3

(q,r )] Re[A3
(q,r )]

Note.Coefficientsa nm
(q,r ) of the Pauli matrices 2I xm, with 2I x0 equal to the

dentity operator, are tabulated for the expansion of the productUq2I xnUr
† in

q. [24] given the initial conditions denoted byn in Eq. [17]. The expansio
oefficients are written in terms ofAn

(q,r ) andBn
(q,r ) defined in Table 2. Detai

f the derivation are provided in the Appendix. For applications in the
5 q 2 2.
i (V) listed in row i , column n of
re

q.

r

h

he

able 3 multiply terms consisting of products ofi S-spin
perators, withi # n. The f i

n with i . n are zero, so th
olutions forr n(t) become progressively simpler for smallern.
or an IS2 system, terms involvingS3x andS3z are eliminated
nd the coefficients change to the form given in column
able 3. For an IS system, there are no terms involvingS2x and

2z, and the coefficients change to the form given in colum
f Table 3. The particular argumentsVnm of the functions
epend on the initial condition, denoted byn, and on the
omponent 2I xm

in the product. They are listed in Table 4
eneral (q, r ) in terms ofAn andBn tabulated earlier in Tab
. For example, the terms involving operator 2SyIx in Eq. [25]
n 5 3) requireV01 of Table 4 and the three functionsf i

3 of

01 5 Im[B0] in column 3 of Table 3. We merely take t
erms involving 2I x0 which are written out fully as functions

00
(q,r ) 5 Re[A0

(q,r )] and changeI x0 to I x, Sx to Sy, and Re[A0]
o 2Im[B0]. The remaining terms are generated simila
sing the other elements in row zero of Table 4. Solution

he evolution of initial states labeled by indexn in Eq. [17] are
onstructed similarly using rown of Table 4.

TABLE 2

n An
(q,r ) Bn

(q,r )

0 aqa*r 1 bqb*r 2aqbr 1 bqar

1 aqb*r 1 bqa*r aqar 2 bqbr

2 aqb*r 2 bqa*r aqar 1 bqbr

3 aqa*r 2 bqb*r 2aqbr 2 bqar

Note.The elementsAn
(q,r ) andBn

(q,r ) of Table 1 are listed as functions of t
ayley–Klein parameters defined in Eq. [14] and Eq. [A3], as outlined i
iscussion leading to Eq. [A5] in the Appendix. Complex conjugatio
enoted by *.

TABLE 3

IS IS2 IS3

V(1,21) V(2,0) 1 V(0,22) V(3,1) 1 2V(1,21) 1 V(21,23)

0 V(2,0) 2 V(0,22) V(3,1) 2 V(21,23)

0 0 V(3,1) 2 2V(1,21) 1 V(21,23)

Note.Solutions for the density operatorr n(t) during irradiation of the I spin
n an ImSn system are provided in Eq. [26] (m 5 1) and Eq. [38] (m . 1) for
he initial states denoted byn in Eq. [17], which are derived from the S-sp
olarization. The product operator coefficientsf i

n(V) in the solution are tab
lated in columnn. The subscripti denotes the number of S-spin operator
product. Form 5 1, Table 4 lists the specific argumentsVnm, correspondin

o terms containingI xm in the solution forr n(t). An example illustrating th
pplication of Table 3 to Eq. [26] for the specific case of an IS3 system startin
ith the initial stateSx (n 5 0) is provided in Eq. [25] and the discuss

hereafter. Solutions for the other initial conditions are obtained by substi
he elements in rown of Table 4 for those elements shown in Eq. [25]. T
olutions become progressively simpler for smallern, sincef i

n 5 0 for i . n.
rguments tof n

t,
i for generalm in Eq. [38] are given in Eqs. [34] and [36].
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The final result for generaln and initial conditionn can be
ritten succinctly as

rn~t! 5
1

2n21 O
i51

n S Si , x$ f 1
n~Vn0! 1 2 O

jÞi

n

Sj ,z@ f 2
n~Vn0!

1 2 O
k.j
kÞi

n

Sk,z f 3
n~Vn0!#% 1 2 O

r51

3

I xr
Si ,y$ f 1

n~Vnr!

1 2 O
jÞi

n

Sj ,z@ f 2
n~Vnr! 1 2 O

k.j
kÞi

n

Sk,z f 3
n~Vnr!#%D .

[26]

s an example, Eq. [25] was provided to show the exp
orrespondence between terms involvingSi ,x in Eq. [26] for an
S3 system starting with initialSx (n 5 0).

The observed signal,^Sx(t)& } Tr[Sxr n(t)], is proportiona
o f 1

n(V n0), since only theSx
2 terms have nonzero trace. T

ther terms give the relative proportions of the different
erences that have evolved. Alternatively, the expansion i

24] can be performed just as readily in terms of eitherI 6 or the
elated spherical tensor basis if these forms of the solutio
equired, or the desired transformations between bases c
erformed on the final result.

mSn Systems

The previous results can easily be extended to obtain
olutions for an ImSn system. We write thexj component of th
th I spin asI i ,xj. For thei th I spin, Eq. [11] becomes

* i~t! 5 2 O
q , . . . ,q 561

vqs
z I i P

j51

n

P j
qj, [27]

TABLE 4

0
(Sx)

1
(2SyI x)

2
(2SyI y)

3
(2SyI z)

Re[A0
(q,r )] 2Im[B0

(q,r )] 2Re[B0
(q,r )] 2Im[A0

(q,r )]
Im[A1

(q,r )] Re[B1
(q,r )] 2Im[B1

(q,r )] Re[A1
(q,r )]

2Re[A2
(q,r )] Im[ B2

(q,r )] Re[B2
(q,r )] Im[ A2

(q,r )]
Im[A3

(q,r )] Re[B3
(q,r )] 2Im[B3

(q,r )] Re[A3
(q,r )]

Note.The elementsV nm
(q,r ) of Table 3 (r 5 q 2 2) that appear in the Eq. [2

olution for the density operatorr n(t) in an ISn system starting with the initia
ondition denoted byn in Eq. [17] are listed as functions ofAn

(q,r ) and Bn
(q,r )

efined in Table 2. For a simple IS system,Vnm
(1,21) is the coefficient of th

roduct operator displayed in the heading for columnm. For general ISn, the
oefficients of these same operators are given by the linear combinati
ow 1 of Table 3, with coefficients of the additional product operators that
or n . 1 listed in rows 2 and 3, as illustrated for an IS3 system in Eq. [25]
1 n
it

-
q.

re
be

he

o that*(t) 5 ¥ i51
m * i . Although the Hamiltonian no long

xhibits the simple 23 2 block-diagonal structure of the In
ystems, the individual* i commute among themselves.
ddition, all the terms in* i commute, since each term conta
unique product of projection operators, which guarantee

he commutator has at least one product of the formPj
6Pj

7 5
for each term. The propagator is still written as in Eq. [

ut now

U ~qs!~tk, t0! 5 P
i51

m

Ui ~qs!~tk, t0!. [28]

he evolution of the density operator, described in Eqs.
hrough [23], follows immediately, with a minor modificati
o Eq. [22] forZn. Define the functionY(m, q) as the produc

Y~m, q! 5 P
k51

m

Uk~q!U k~q22!
† [29]

nd define

Y~m, xj, q! 5 O
k51

m

~Uk~q!2I k, xj
U k~q22!

† P
lÞk

m

Ul ~q!U l ~q22!
† !. [30]

hen

Zn~t! 3 5 O
i51

n O
q1, . . . , qn561

qiÞ21

Y~m, qs! Si
qi P

jÞi

n

P j
qj n 5 0

O
i51

n O
q1, . . . , qn561

qiÞ21

Y~m, xj, qs! Si
qi P

jÞi

n

P j
qj n Þ 0

[31]

nd the final solution for the density operator is still given
q. [23].

Single S-spin. For in-phaseSx at the start of the I-spi
rradiation,r 0(t) is obtained fromZ0 in Eq. [31] as

r0~t! 5 Re@S1Y~m, 11!# 5 Re@~Sx 1 iSy!Y~m, 1 1!#.

[32]

ccording to Eq. [24] defining the general matrixa nm
(q,r ) listed in

able 1,Y(m, q) is all possible products ofm elements from
ow zero, so that, most generally,

in
e
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~m, q! 5 2m O
m1, . . . , mm50

3

@a 0m1

~q,q22!. . .a 0mm

~q,q22!#@I m1. . .I mm
#,

[33]

herea00 is pure real anda 0j ( j 5 1, 2, 3) is pure imaginary
The terms multiplyingSx in Eq. [32] for r 0(t) must be the

eal part ofY(m, 11), so the coefficient ofSx 5 2SxI x0 is
mmediately seen to be (a 00

1,21)m 5 [Re(A0
1,21)] m. Operators o

he form 4SxI xjI xk result from multiplying two imaginary ele
ents from columns 1 through 3 for an I2S system and usin

I x0 for the required third real element in an I3S system. Term
ultiplying iSy must be pure imaginary to produce a r

esult, leading to operators of the form 2SyI xj and, for I3S,
dditional operators 8SxI xjI xkI xl. The m 5 1 result for an IS
ystem is given in Eq. [26] as functions of the pure
lementsVnm in Table 4, wherea 0j 5 2iV 0j anda j0 5 iV j0

j 5 1, 2, 3). More generally, we can select the terms f
q. [33] that satisfy the above requirements to define

esulting coefficients of theSx and Sy operators in terms o
eneral indices (q, r ) as

c0,x
~q,r ! 5 @V 00

~q,r !# m 2
m 2 1

2m22 4 @V 00
~q,r !# m22

3 O
k,l51

3

V 0k
~q,r !V 0l

~q,r !~ O
p51

m21 O
s.p

m

I p, xk
I s, xl

!

c0,y
~q,r ! 5 2@~V 00

~q,r !# m21 O
k51

3

V 0k
~q,r !I xk

2 1
2 ~m 2 1!~m 2 2!

3 8 O
k,l ,p51

3

V 0k
~q,r !V 0l

~q,r !V 0p
~q,r !I 1,xk

I 2,xl
I 3,xp

[34]

or m 5 1, 2, 3.
The density operator resulting from the initial state 2SyI xj,

ith I xj 5 ¥ i51
m I i ,xj, is obtained fromZj in Eq. [31] as

r j~t! 5 Im@S1Y~m, xj, 11!#. [35]

rom Eq. [30] defining Y(m, xj , q), there is a facto
(11)2I i ,xjU (21)

† given by row j of Table 1 for a single I spin
ultiplied by U (11)U (21)

† for the remainingm 2 1 spins. This
rocess is repeated for each I spin contained in the sum

he individual spins, and the final result must be imagin
ompared to row zero of Table 1, the elements which
ither pure real or pure imaginary in rows 1–3 are in
hanged, so the solutions forr j(t) can be taken from ther 0(t)
esults by adding all combinations in Eq. [34] that replac
ingle element from row zero with one from rowj . The
oefficients of theSx andSy operators can then be written
eneral form for this case as
l

l

e

er
.

re
-

a

c j , x
~q,r ! 5 mV j0

~q,r !~V 00
~q,r !! m21 2

m 2 1

2m22

3 4 O
k,l51

3

@~m 2 2!V j0
~q,r !V 0k

~q,r !V 0l
~q,r !

1 ~V 00
~q,r !! m22~V jk

~q,r !V 0l
~q,r ! 1 V 0k

~q,r !V jl
~q,r !!#

3 @ O
p51

m21 O
s.p

m

I p, xk
I s, xl

#

c j ,y
~q,r ! 5 2 O

k51

3

@~V 00
~q,r !! m21V jk

~q,r ! 1 ~m 2 1!

3 ~V 00
~q,r !! m22V j0

~q,r !V 0k
~q,r !#I xk

2 1
2 ~m 2 1!~m 2 2! 8 O

k,l ,p51

3

~V jk
~q,r !V 0l

~q,r !V 0p
~q,r !

1 V 0k
~q,r !V jl

~q,r !V 0p
~q,r !

1 V 0k
~q,r !V 0l

~q,r !V jp
~q,r !!I 1,xk

I 2,xl
I 3,xp

, [36]

o that, combining these results,

rn~t! 5 c n, x
~1,21!Sx 1 c n,y

~1,21!Sy [37]

or an ImS system starting with the initial conditions denoted
5 0, . . . , 3 of Eq.[17]. The expressions given in Eqs. [3
nd [36] for the coefficients show explicitly which I-sp
perators contribute as the number,m, of I spins increases.

Multiple S-spins. For n . 1, terms of the formSiP jPj in
q. [31] result in the same products of S-spin operators a

he ISn case. Noting that the terms involving components o
otal I-spin operator form I spins are included in the expre
ions forcn,x andcn,y derived above, we can immediately wr
rom Eq. [26]

rn~t! 5
1

2n21 O
i51

n S Si , x$ f 1
n~cn, x! 1 2 O

jÞi

n

Sj ,z@ f 2
n~cn, x!

1 2 O
k.j
kÞi

n

Sk,zf 3
n~cn, x!#% 1 2Si ,y$ f 1

n~cn,y!

1 2 O
jÞi

n

Sj ,z@ f 2
n~cn,y! 1 2 O

k.j
kÞi

n

Sk,z f 3
n~cn,y!#%D ,

[38]

sing the functionsf i
n from Table 3. Although the proliferation

roducts operator terms becomes somewhat unwieldy as the
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278 SKINNER AND BENDALL
er of I and S spins increases, the observable magnetizationSx and
oherences 2SyIxj are readily extracted by inspection. In additi
his expression is straightforward to program for simulati
ariations in the scalar couplings are handled as for the ISn case
ith an additional modification ofvqs for each I spin, leading t
eparate versions of Table 4 labeled by the I spin and corres
ng modifications of Eqs. [34] and [36].

EVOLUTION OF I-SPIN COHERENCE

This section provides solutions for the evolution of the I-s
agnetization and associated coherences involving only
itudinal Sz that were not considered in the previous sect
he formalism shows immediately that these can be viewe
lassical rotations about effective fields that incorporate
oupling, which allows the solutions to be written down
nspection.

Sn Systems

The propagator is still given by Eq. [15], and we consider
et of six initial states

r~t0! [ $I xj
, 2I xj

Sz%. [39]

s for the initial conditions listed in Eq. [17] of the previo
ection, the members of this set only evolve, for an IS sys
o members within the set. The time development of the sy
s given by

r~t! 5 U~t, t0!r~t0!U
†~t, t0!

5 O
q1, . . . ,qn561

Uqs
r~t0!U qs

† P
j51

n

Pk
qj, [40]

hich follows fromPk
6Pk

7 5 0 and 2Pk
6Sz 5 6Pk

6. The sums
nd products that appear in Eq. [40] are parsed in the di
ion surrounding Eq. [11]. Thus, the solution for the den
perator again reduces to calculating products of the
qI xjU r

†, similar to Eq. [22], and we could proceed with
xpansion in terms of the Pauli basis as in the previous se
owever, Eq. [22] was obtained for initial states involv

ransverse S-spin operators, which, in turn, for

TAB

cos2f(sin2u q 1 cos2u qcos 2b q) 1 sin2f cos 2b q sin 2f sin2u qsin2b q 2
sin 2f sin2u qsin2b q 1 cos u qsin 2b q sin2f(sin2u q 1 cos2u
cos f sin 2u qsin2b q 2 sin f sin u qsin 2b q sin f sin 2u qsin2b q

Note.The matrixRq produces a classical rotation of a vector by angleb q

rom thex axis in the transverse plane. The equivalent effective fieldvq aris
7], completely determines the rotation parameters through the relation
T

,
.

nd-

n-
.
as
e

e

,
m

s-
y
m

n.

d

5 q 2 2. This mixing of propagators associated w
ifferent allowed values for the magnetic quantum numbe

he total S-spin angular momentum has no classical anal
s noted earlier. In the present case, wherer 5 q, each term o

he formUqI xjUq
† in Eq. [40] can be immediately recognized

he transformation that generates a classical rotation of
omponent of the quantum-mechanical vector operatorI about

q, and the solutions can be obtained by inspection u
tandard matrix results for a 3D rotation about an arbit
xis. The desired rotation matrixRq is listed in Table 5 in term
f the RF phase anglef, the polar angleu q given in Eq. [8],
nd rotation angleb q of Eq. [12]. The rotated I-spin comp
ents are then multiplied by the specified products of
rojection operatorsPk

6 5 1
2Ek 6 Skz.

For n 5 1, there are product operator terms involving b
o S spins and a singleSz, so that

2I xj
3 @R~11! 1 R~21!#I xj

1 @R~11! 2 R~21!#2I xj
Sz ~n 5 1!, [41]

here the rotationsR(61) act only on the I-spin operator. An R
hasef 5 0 reproduces the solution in Ref. (7). For n 5 2,

here are rotations {R(62), R(0)} and an additional produc
1zS2z, which, forn 5 3, expands to includeS1zS3z andS2zS3z

lus a term involving three S spins,S1zS2zS3z, together with
otations {R(63), R(61)} acting on the given I-spin operator. T
unctionsgn

n(R) of the specific rotation matrices which give
oefficients of these operators are tabulated in Table 6, w
as for the functionsf i

n in Table 3) the superscriptn is the
umber of S spins in the system and the subscriptn 5 0, . . . ,
gives the number of S spins in the particular product ope

erm. The results, again, are of similar structure to Eq. [26],
e obtain, forr j(t 0) 5 I xj,

r j~t! 5
1

2n S g0
n~R! 1 2 O

i51

n

Si ,z$g1
n~R! 1 2 O

k.i

n

Sk,z@ g2
n~R!

1 2 O
l.k

n

Sl ,zg3
n~R!#%D I xj

. [42]

his equation can be used for the initial state 2I

5

os u qsin 2b q cosf sin 2u qsin2b q 1 sin f sin u qsin 2b q

s 2b q) 1 cos2f cos 2b q sin f sin 2u qsin2b q 2 cos f sin u qsin 2b q

os f sin u qsin 2b q cos2u q 1 sin2u qcos 2b q

out an axis oriented at a polar angleu q from thez axis and azimuthal axisf
from the interaction between the coupling and the RF fields, as given
fined in Eqs. [1], [8], and [12].
LE

c

qco
1 c

2ab
ing
s de
xjSz by multi-
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279PRODUCT OPERATOR EVOLUTION DURING RF PULSES
lying all R(0), R(21), andR(23) in Table 6 by21 which follows
rom the relation 2Pj

6Sj ,z 5 6Pj
6 that arises in the derivatio

mSn Systems

For isotropicJ-coupling, additional I spins produce no eff
ther than increasing the initial polarization of I. The subsp
ropagatorsU (q) in Eq. [13] become a product composed

ndividual propagators for each I spin, as in Eq. [28], and
revious rotations become rotations of the total I spin for e
omponentI xj 5 ¥ i51

m I i ,xj. Different scalar couplingsJIS

erely result in separate rotations of individual I-spin com
ents determined by eachUi (q).

DISCUSSION

So far, we have presented a theoretical formalism for
aining the product operator evolution of a weakly coup
mSn system during arbitrary RF irradiation, chosen, with
oss of generality, to be applied to the I spins. We then ap
his formalism to the initial states of the system that
omposed solely of operators for the total I and S spins, s
hese are the basic states that are generated by pulse seq
mploying hard pulses. Exact solutions for the time evolu
f the density matrix in terms of its constituent product o
tor states have been provided in Eqs. [26], [38], and [42
In the following discussion, we first consider the efficie

f the results for performing simulations. This is followed b
ection on spin dynamics, where we illustrate the conne
ith rotations and the basic simplicity of the solutions, writ

hem in a form consistent with previous analyses of an
ystem (8, 9). Further insight into spin dynamics is provided
riting the explicit analytical solutions for the product opera
volution of an IS system during constant on-resonance
iation of the I spins. We then consider the solutions in

imit where RF field strength is much greater than the coup
trength, which is the relevant domain for many applicati
he limit of weak RF fields, which has led to several n

TABLE 6

IS IS2 IS3

R(11) 1 R(21) R(12) 1 2R(0) 1 R(22) R(13) 1 3R(11) 1 3R(21) 1 R(23)

R(11) 2 R(21) R(12) 2 R(22) R(13) 1 R(11) 2 R(21) 2 R(23)

0 R(12) 2 2R(0) 1 R(22) R(13) 2 R(11) 2 R(21) 1 R(23)

0 0 R(13) 2 3R(11) 1 3R(21) 2 R(23)

Note. The initial product operator states listed in Eq. [39] evolve du
rradiation of the I spins in an ImSn system according to Eq. [42]. These sta
re derived from the I-spin polarization with no prior excitation of the S s
he coefficientsgn

n(R) of product operators consisting ofn S-spin elements a
abulated in columnn as functions of the classical rotation matricesRq defined
n Table 5. The format and usage are similar to Table 3 and the discu
herein. Application of Table 6 to an IS system is provided in Eq. [41]. To
he table for the evolution of the initial states 2I xjSz, all R0, R21, andR23 in the
able are multiplied by21 as discussed in the text following Eq. [42].
e
f
e
h

-

-
d
t
d

e
ce
nces
n
-

n

S

r
a-
e
g
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pplications (4, 5), is considered next, followed by a comp
son of the exact solutions with those obtained by a freque
sed approximation.

fficiency Issues

The solutions we have obtained for the density operator
unction of time during RF irradiation of the I spins require
–K parametersaq(t k, t 0) andbq(t k, t 0) for the simple 23 2
ubspacesUq(t k, t 0) of the propagator from initial timet 0 to
nal time t k 5 kDt. These can be derived fromk products o
heUq given in Eq. [13] for each of the constant time interv
f length Dt betweent 0 and t k. The algorithm in Eq. [A3
enerates the entire set of C–K parameters labeled byq for the
discrete times in the interval as a sequence of two com
ultiplications and one complex addition performedk times. It

equires no operations on large matrices, such as diagon
ion or matrix multiplication, which are relatively time-co
uming procedures of orderN3 for anN 3 N matrix, withN 5
n1m for an ImSn system of coupled spin-1

2 nuclei. In the presen
ethod, there aren 1 1 subspaces with labelq ranging from
n to 2n in incrementsDq 5 2. The equivalent effectiv

elds v q defined in Eq. [7] for each subspace comple
etermine the solutions via the (n 1 1) sets of C–K paramete

hey give rise to. Thus, the computational load scales line
ith the number of spins in an ISn system rather than as (2n11) 3

or a standard density-matrix calculation.
For larger numbers (m . 1) of I spins, the solutions mere

equire additional linear combinations of this basic set of C
arameters. Moreover, each product operator contributio

he total density operator can be calculated independen
he others. If only the observable signal is of interest, only

x component needs to be calculated. In addition, Tab
hows that eachAn

(q,r ) andBn
(q,r ) required in Table 4 is the su

f two terms. Results forn 5 2, 3 follow from those forn 5
, 0, respectively, by changing the sign of the second t
hich further improves the efficiency in calculating the full
f solutions. By contrast, the usual matrix-based methods
alculate the full density operator and project it onto
bservable component. The other product operator compo

atent in the density matrix represent unnecessary com
ional overhead if they are not desired, although the de
atrix can be projected onto all possible product ope

omponents for an ImSn system by trial and error to determi
hich components are nonzero, if necessary. In the pr
ethod, one knows in advance precisely which operator
enerated.

pin Dynamics

EachUq for an intervalDt in Eq. [13] is an operator th
ffects a rotation of an I-spin componentI xj by angle 2b q

k 5

q
kDt about the axisv̂q

k according to the relationUqI xjUq
†. As

oted earlier, a classical rotation of this form occurs only
nitial states involving no transverse S-spin operators. M

.
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280 SKINNER AND BENDALL
enerally, transformations of the formUqI xjU r
† arise (withr 5

2 2), which have no classical analogue. Successive a
ation of theUq from time t 0 to time t k generates the opera

q(t k, t 0), which represents an equivalent single rota
w q(t k) about an axisn̂q(t k) for eachq. The solutions forr n(t k)
an be cast in terms of these parameters by inverting
xpressions foraq(t k, t 0) andbq(t k, t 0) analogous to those
q. [14] to obtain, at timet k,

wq 5 cos21@Re~aq!# n̂q,z 5 2Im~aq!/sin wq

n̂q, x 5 2Re~bq!/sin wq n̂q,y 5 2Im~bq!/sin wq. [43]

his is the form chosen originally in (8).1 Although this approac
rovides a connection to rotations even when no classical

ions occur, we emphasize that using the C–K parameters di
or simulations is more efficient and is also numerically stabl
ontrast to the inversions given in Eq. [43].
The observable signal for each of the initial conditions

q. [17] is given in column zero of Table 4 and illustrates
implicity of the solutions. According to Table 4, theSx com-
onent that evolves during RF irradiation of the I spins in

Sn system starting with an initial stateSx requires the term
0,0
(q,r ) 5 Re [A0

(q,r )]. The particular functions labeled byq andr
re given in row 1, columnn of Table 3. Using Table 2 and E

A3] for the C–K parameters to calculateA0
(q,r ) gives

Re@A0
~q,r !# 5 coswq cosw r 1 n̂q z n̂rsin wq sin w r

5
1 1 n̂q z n̂r

2
cos~wq 2 w r!

1
1 2 n̂q z n̂r

2
cos~wq 1 w r!. [44]

he observable signal for an initial state 2SyI x requiresV 1,0
(q,r ),

hich is given by

Im@A1
~q,r !# 5 2n̂q, x sin wq cosw r 2 n̂r , x coswq sin w r

2 ~n̂q,y n̂r ,z 2 n̂q,z n̂r ,y!sin wq sin w r

5 2 1
2 ~n̂q 2 n̂r!x sin~wq 1 w r!

2 1
2 ~n̂q 1 n̂r!x sin~wq 2 w r!

2 1
2 ~n̂q 3 n̂r!x @cos~wq 2 w r! 2 cos~wq 1 w r!#.

[45]

imilar calculations for the initial conditions 2SyI y and 2SyI z

eplace thex component of the rotation axes by the respec
andz components in Eq. [45].
As discussed earlier,q and r are allowed values for thez

1 The rotation convention and angles defined in Refs. (6) and (8) correspond
o transformingw in the present work to2w/2.
li-

n

he

ta-
tly
n

f
e

n

e

omponent of the total S-spin angular momentum (in uni
alf-integral spin) and satisfy the relation (q 2 r )/ 2 5 1,
hich corresponds to the usual selection rule for unit chan

hez component. The particular valuesq 5 1 andr 5 21 for
n IS system in Eqs. [44] and [45] give, respectively,
olution for the decoupled signal starting with in-phase m
etizationSx (8) and the solution for the observable sig
tarting with two-spin coherence 2SyI x (6).1 Increasing th
umbern of S spins in the system increases the numbe
quivalent effective fieldsv q (q 5 1n, . . . , 2n), which
esults in a sum of the terms derived from each pair (v q, v q22),
s shown in row 1 of Table 3 and illustrated for a single t
f general (q, r ) in Eqs. [44] and [45]. For an IS2 system, the
ecoupled signal is then Re[A0

(2,0)] 1 Re[A0
(0,22)], which can be

onstructed from the general result given in Eq. [44]. Fo
S3 system, it is Re[A0

(3,1)] 1 2 Re[A0
(1,21)] 1 Re[A0

(21,23)]. The
umber of unique terms multiplying a given product oper
omponent thus increases linearly with the number of S s
s discussed in the previous section. There are also coeffi
f product operator states containing more than one S
perator, which are linear combinations of the previously
ulated terms, as listed in rows 2 and 3 of Table 3.
llustration for an IS3 system has already been provided in
25].

Product operator evolution of IS systems irradiated on
nance. The product operator transformations given in Ta
are especially simple for the case of constant amplit

n-resonance irradiation of the I spins in an IS system. In
ase, the offset parameterd in Eq. [1] is equal to zero, so th
he effective RF fieldve is constant in the transverse plane;
onstant equivalent effective fieldsv61 (and unit vectorsv̂61

n̂61 associated with them) in each subspace of the prop
ors U61 have 6z components given by Eq. [7], and t
otation anglesb61 8 w61 derived from Eq. [12] increas
inearly with time. For RF phasef 5 0 in Eq. [1], we have

v61 5 @~v rf!
2 1 ~)/ 2! 2# 1/ 2 8 v e

) [46]

w61 5 1
2v e

)t 8 w [47]

~n̂61!x 5 v rf /v e
) 8 n̂x [48]

~n̂61!z 5 6
)/ 2

v e
) 8 6n̂z [49]

o give

a61 5 cosw 7 in̂z sin w

b61 5 2in̂x sin w [50]

rom Eq. [14]. The necessary products of these C–K par
ers are given in Table 2 for the required coefficients of
arious states in Table 4. The evolution of each initial s
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281PRODUCT OPERATOR EVOLUTION DURING RF PULSES
enoted by the indexn in Eq. [17] is given by the correspon
ng row in Table 4. Using the relationn̂x

2 1 n̂z
2 5 1 and the

rigonometric half-angle relations to write both sin2(w) and
os2(w) in terms of cos(2w), we obtain

Sx 3 ~n̂ x
2 1 n̂ z

2 cos 2w!Sx 2 n̂xn̂z~1 2 cos 2w!2SyI y

1 n̂z sin~2w!2SyI z [51]

2SyI x 3 2SyI x [52]

2SyI y 3 2n̂xn̂z~1 2 cos 2w!Sx 1 ~n̂ z
2 1 n̂ x

2 cos 2w!2SyI y

1 n̂x sin~2w!2SyI z [53]

2SyI z 3 2n̂z sin~2w!Sx 2 n̂x sin~2w!2SyI y

1 cos~2w!2SyI z [54]

or the time evolution of the product operator states du
n-resonance RF irradiation of the I spins in an IS system
xplicit dependence of these transformations on the applie
eld and the coupling are obtained from the substitution
qs. [46–49].
The transformations of the initial states of Eq. [39], cont

ng no transverse S-spin operators, are obtained similarly
able 5 to construct the 3D rotation matricesR61 utilized in the
xample of Eq. [41], which is the application of Table 6 t
imple IS system. As noted in the discussion following
42], the transformations of the initial states 2I xjSz are also
btained from Eq. [41] by making the substitutionR21 3
R21. In other words,I xj and 2I xjSz are interchanged in E

41]. For on-resonance irradiation and RF phase equal to
he same parameters in Eqs. [46–49] can be identified in T
, where sinu61 5 n̂x, cos u61 5 6n̂z, and b61 5 w. The
otations are applied only to the I-spin operators, and eacI xj

s represented as the usual unit vector with elementj equal to
and the other elements equal to zero. Thus, for exam

peratorI x picks out the first column ofR61 with the element
n each row giving the coefficients ofI x, I y, and I z. The
equired addition and subtraction ofR61I xj in Eq. [41] gives

I x 3 ~n̂ x
2 1 n̂ z

2 cos 2w!I x 1 n̂z sin~2w!2I ySz

1 n̂xn̂z~1 2 cos 2w!2I zSz [55]

I y 3 cos~2w!I y 1 n̂x sin~2w!I z

2 n̂z sin~2w!2I xSz [56]

I z 3 2n̂x sin~2w!I y 1 ~n̂ z
2 1 n̂ x

2cos 2w!I z

1 n̂xn̂z~1 2 cos 2w!2I xSz [57]

2I xSz 3 ~n̂ x
2 1 n̂ z

2 cos 2w!2I xSz 1 n̂z sin~2w!I y

1 n̂xn̂z~1 2 cos 2w!I z [58]

2I ySz 3 cos~2w!2I ySz 1 n̂x sin~2w!2I zSz

2 n̂z sin~2w!I x [59]
g
e
F

n

-
ng

.

ro,
le

le,

2I zSz 3 2n̂x sin~2w!2I ySz 1 ~n̂ z
2 1 n̂ x

2 cos 2w!2I zSz

1 n̂xn̂z~1 2 cos 2w!I x. [60]

Results analogous to Eqs. [51–60] are obtained for ann

ystem by appropriate modification of the parameters in
46–50], as described in the previous section. We next con
he general product operator solutions for the evolution o
ensity matrix, as well as the particular solutions above, in

imits of both strong and weak RF fields.

trong RF Fields (ve @ ))

During an adiabatic inversion pulse, the vector mode
ecoupling (3) would predict very simply that the observa
-spin signalf 1

n(V n0) is independent ofn in an ISn system
xcept for a larger signal as the number of S spins in the sy

ncreases. Since the evolution of the S spins in the m
epends only on the orientation of a semiclassical I-spin

or, and there is only a single I operator in the system, the
nteraction is the same for alln. The same, but more gener
onclusion was reached in (11) for the coefficients of 2SyI xj

enerated during adiabatic decoupling, based on the resu
imulations. However, the equality of the solutions for dif
nt n is not limited to adiabatic pulses, and the present s

ions show explicitly why this is so for any RF pulse
ufficiently large amplitude.
Under the conditionve @ ), differences among thev q that

etermine the solution forr(t) are relatively insignificant. A
n illustration to provide a sense of scale, a coupling of 15
nd a simple on-resonance pulse of constant amplitude 3
ivesv q/(2p) equal to 3.001, 3.004, and 3.008 kHz forq 5 1,
, and 3, respectively. There is thus a variation of only a

enths of a percent among the differentv q, and all theV (q,r ) of
able 3 are equal to the extent that the effective applied
eld is sufficiently large. As a result, the coefficientsf i

n for i .
in Table 3, corresponding to terms in Eq. [26] with more t

ne S-spin operator, are zero in the limit of large RF. T
imple equivalence of the solutions for all ISn breaks down
hen the RF field becomes small enough that differenv q

roduced by the coupling among the RF field, I, and S pro
ignificant effects. In the example above, a smaller RF am
ude of 1 kHz gives variations on the order of a percen

q/(2p) equal to 1.003, 1.011, and 1.025 kHz, and differen
n the solutions for increasing numbers of S spins become
pparent.
For the on-resonance solutions of Eqs. [51–60], ifvrf @ )

hen n̂x ' 1, n̂z ' 0, and there are no surprises. The I-s
perators in Eqs. [55–60] precess about the RF field acco

o expectation for a standard hard pulse on the I spins. In
51–54], the observable signal is proportional to theSx com-
onent. Initial in-phase magnetizationSx in Eq. [51] produce
pon Fourier transformation a large, constant (DC) compo
roportional ton̂2 (i.e., it is decoupled) with small sidebands
x
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elative amplituden̂z
2/ 2 due to the cos(2w) ' cos(vrft) oscil-

ation imposed on the signal (8, 13). In addition, the intercon
ersion of 2SyI y and 2SyI z given in Eqs. [53] and [54] resul
n well-known phase anomalies from initial two-spin coh
nce or antiphase magnetization if the signal is acquired

he RF has been turned off (12). There is no observable sign
n these cases for acquisition with the decoupler on, sinc

x component depends onn̂z and is thus vanishingly small.
However, there are interesting new effects that are evide

he exact solutions of Eqs. [51–60] when the RF field stre
s on the order of the coupling, so thatn̂z is of appreciabl

agnitude. These are considered in the next section tog
ith a comparison of the general solutions with previou
btained results.

eak RF Fields (ve ' ))

As discussed in the previous section, the solutions are
erent for different numbers of S spins in the weak-field c
hich is well known from continuous-wave (CW) decoupl
sing RF of constant amplitude and phase. Exact solution

he observable signal during CW irradiation starting with
hase magnetization in an ImSn system are listed in Tables I–
f Ref. (13) (the roles of I and S are interchanged compare

he usage here). In the present work, both the amplitude an
requency of the observed S-spin signal can be readily obt
rom Eq. [44]. For constant RF,w q 5 1

2v qt andn̂q z n̂r 8 v̂q z
ˆ r 5 cos(u q 2 u r), with v q andu q defined in Eq. [7] and Eq
8], respectively, which facilitates the comparison with
esults in Ref. (13). For ISn, the allowed values forq and r
ppear as the superscripts in the first row of Table 3, w
ives the sum of terms constructed from Re[A0

(q,r )] that com-
rise the solution for the signal. For ImS, we haveq 5 1, r 5
1, and the observed signal is given by Eq. [44] raised to

owerm, as noted in the discussion following Eq. [33].
As an example, if we observe the S spin in an I3S system

uring irradiation of the I spins, then in the limitvrf 3 0, the
olutions must yield lines at6J/ 2 and 63J/ 2 in the ratio
:3:3:1. Cubing Eq. [44] and performing the necessary tr
ometric rearrangements to obtain simple (raised to the
ower) cosine functions of the anglesw61 for the time depen
ence of the signal gives eight terms that lead to the eight
f 6frequencies in Table III upon Fourier transformation of
ignal. Of these eight cosine terms, we consider only the
hat have nonzero amplitude when the RF is turned off.
ning a as the angle betweenn̂11 8 v̂11 andn̂21 8 v̂21 gives

ˆ 11 z n̂21 5 cosa, and we obtain

Sx , 3
8 ~1 2 cosa!@3~1 1 cos2a! 1 2 cosa#

3 cos~w11 1 w21! 1 1
8 ~1 2 cosa! 3

3 cos 3~w11 1 w21! 1 $terms3 0 asvrf 3 0%.

[61]
-
er

he

in
th

her
y

if-
e,

or
-

o
the
ed

h

e

-
st

irs

o
-

hen, forvrf 5 0, we havev61 5 6)/ 2 ẑ, w61 5 )t/4 from
qs. [46] and [47],a 5 p so that

Sx 3 3 cos1
2 )t 1 cos3

2 )t [62]

s required. In Tables I–III (13), A(m) andw(m) correspond t
2m and a, respectively, in the present work. There is
pparent typesetting error in the expression for the line in
ity in rows 6 and 9 of Table III, which corresponds to the
erm in Eq. [61] above. Forvrf 5 0, so there is only th
oupling interaction, Table III as written yields a quartet w
qual line intensities. We also obtain3

8 (1 1 cos a)[3(1 1
os2a) 2 2 cosa] for the amplitude of the cos(w11 2 w21) term
ot shown in Eq. [61], which corresponds to rows 2 and
able III. For an I2S system, we take the square of Eq. [44]
nd a constant, DC term of amplitude1

2 (1 1 cos2a) relative to
he expression cos2a for the corresponding term in row 2
able II. Both of these expressions give the correct unit
litude for this frequency component whenvrf 5 0 (a 5 p),
ut the current solutions accurately predict a minimum valu
for the intensity whena 5 p/2, i.e., vrf 5 )/2, so the

enterband S-spin signal in an I2S system never vanishes.
The complete solutions for the density operator obtained

eveal a number of interesting new phenomena at low RF
trength. In Eq. [53], the observableSx magnetization that evolve
rom the initial 2SyIy state has a DC component proportiona
ˆ xn̂z, with a maximum value equal to12 when vrf 5 )/2, that

imics the signal from in-phase magnetization in Eq. [51]. S
ands of relative amplituden̂xn̂z/2 appear at6ve

) due to the
os(2w) 5 cos(ve

)t) term. The frequency spectrum of the si
ands depends sensitively on RF field homogeneity, accord
q. [46]. These issues and others are discussed more fully i

4), where novel methods are provided for characterizing a
oupler channel for the insensitive spins by observing large
als with the sensitive-spin channel.
For the casev rf 5 )/ 2, so thatn̂x 5 n̂z 5 1/=2, the

implified transformations that can be derived from Eqs.
4] were obtained independently by experiment prior to
eneral quantum mechanical solutions, using a vector pi
f the relevant spin states. The product operator transfo

ions therefore provide the basis for a literal vector interpr
ion of spin evolution during RF irradiation. This model, wh
as proven useful in envisioning new sequences and ap

ions, will be detailed in a subsequent publication. For now
erely note that forv rf 5 )/ 2, Eqs. [51] and [53] show th

he interconversionsSx ^ 2SyI y occur in 100% yield forw 5
/2, i.e., at timet 5 (=2J)21. Further analysis shows that t
ffects have a sensitive dependence on resonance offse
nalogous results are evident in Eqs. [55–60] for the evol
f states derived from the I-spin polarization. Applications

hese new selective coherence transfer pulses are discus
etail in Ref. (5).
In the limit where the RF field is zero, we haven 5 0, n 5
x z
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283PRODUCT OPERATOR EVOLUTION DURING RF PULSES
, andw 5 )/4 in Eqs. [51–54] to obtain the standard prod
perator rules for coupling evolution of an IS system.

omparison with Tilted Frame Methods

We refer to tilted frame methods as those which trans
he Hamiltonian to a frame in which the instantaneous direc
f the effective field (11) or fields, in the case of doub
esonance (14, 15), defines thez axis. The large off-diagon
F terms in the usual rotating-frame Hamiltonian are tr

ormed to diagonal elements in the tilted frame. Small
iagonal elements in the tilted frame are of magnitude)/ve

elative to the diagonal elements and are typically discard
iagonalize* in this approximation. The original problem

hen easily solved in the tilted frame and transformed bac
he rotating frame, with the effect of the omitted terms
ected to be negligible in the limitve @ ). Applications

nclude solutions for adiabatic decoupling (11) and cross po
arization/double resonance (14, 15). The question left open

hen do the terms that were set equal to zero become im
ant? Since the approximate solution ignores their effect
ether, there is no reliable measure in this method for qu

ying the accuracy of the solution, and trial-and-e
omparisons with exact simulations cannot cover all poss
ties. Furthermore, one is not assured that the approximat
ufficiently accurate unless the exact answer is known.
Figure 1 shows the experimental and theoretical S-

ignal during a sech/tanh inversion pulse ofx phase applied t

FIG. 1. The signal resulting from 2SyI x at the start of a decouple
cquisition is plotted as a function of time during a sech/tanh adia

nversion pulse ofx phase applied to the I spins of an IS system (13CH3I).
urther details can be found in Ref. (3). Predictions of the tilted fram
pproximation (dotted line), as discussed in the text, are compared wi
xact solutions provided here (solid line) and experiment (1). A constan
agnitude decoupling field of 10 kHz was employed, which is almost
rders of magnitude larger than the coupling,J 5 150 Hz, illustrating that th

ilted frame approximation may not be sufficiently precise, even when
onditionve @ ) is fulfilled.
o

t

n

-
-

to

to
-

or-
o-
ti-
r
il-
is

in

he I spins of an initial 2SyI x configuration, withJCH 5 150 Hz
3). Predictions of the tilted-frame solution (11) are overlaye
or comparison. Although the constant-magnitude effec
eld of 10 kHz used for the sech/tanh waveform in
xample is almost two orders of magnitude larger than
oupling, so thatve @ ), the time-dependent amplitude of t
ctual signal, and therefore the sidebands in the Fourier-t

ormed spectrum, are an order of magnitude larger than w
redicted by the approximation. An increasingly widespr
isagreement between the exact and approximate solutio
ore general initial conditions occurs at the lower power le
sed in practice to reduce sample heating and produce the
fficient adiabatic decoupling, even though the conditionve @
is still satisfied. We have shown previously that the inten

f cycling sidebands from in-phase magnetization is a u
tandard for the efficiency of adiabatic decoupling seque
16, 17). The exact solutions were instrumental in determin
ecoupling parameters that provide optimal performance u
ractical experimental conditions.
We observe, also, that the tilted frame prediction for

ignal from coherences of the form 2SyI xj during simple on
esonance CW decoupling is identically zero for RF of
mplitude, which would support the longstanding, but err
us, perception that these states produce no useful s
uring RF irradiation of one of the spins. By contrast, the e
olutions, which produce reliable results for any RF wavefo
ecently inspired several novel applications (4, 5) for weak-
eld RF. An issue that remains open is the precision of
ilted frame approach for double resonance of the I and S s
ut this is a more computationally intensive problem tha
eyond the scope of the present article.

CONCLUSION

The dynamics of weakly coupled ImSn systems during arb
rary RF irradiation of the I spins have been considered. E
olutions for the time evolution of the density matrix in ter
f its constituent product operator states have been obtain
ny initial state that is composed solely of operators for

otal I and S spins. Solutions for other initial conditions can
btained similarly. We began by deriving the general solu

or ISn systems in Eq. [26]. The coefficients of the vari
roduct operator terms in the solution are simple functi
efined in Table 3, of the arguments listed in Table 4.
larify the structure of the general solution, the evolution o
S3 system initially in the stateSx is provided in expanded for
n Eq. [25]. The solutions for ImSn systems in Eq. [38] (initia
tates derived from S-spin polarization) and Eq. [42] (in
tates derived from I-spin polarization) are simple extens
f this basic form.
If the amplitude and phase of the RF irradiation are cons

he solutions reduce to straightforward analytical expression
redict several interesting effects due to the coupling among
nd the RF field. The product operator rules for the evolutio

ic

he

o

e
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284 SKINNER AND BENDALL
S systems during constant, on-resonance RF irradiation of the
re provided in Eqs. [51–60]. A brief overview of applicatio
erived from these predictions has been presented. Solutio

he signals that occur during irradiation of coherences of the
SyIxj, together with methods for eliminating them, have b
ublished previously (6), and the time development of an IS s
ystem during a weak amplitude square pulse (as in contin
ave decoupling) has yielded novel characterization-of-deco

COD) sequences for calibrating an insensitive I-spin chann
bserving large signals from these same coherences wit
-spin channel (4). Applications for selective NMR of larg
olecules using new “J-pulses” derived from the solutions ha
lso been proposed (5). The full details of those calculations c
e found here. The time to compute a given product ope
omponent (i.e., the number of floating point operations) f
eneral RF waveform delivered in a series of fixed increm
cales linearly with the number of spins,N, in the system. B
omparison, the computation time of simulations which req
atrix diagonalization or multiplication of large matrices is
rder (2N)3. Additional efficiencies are noted in the correspo

ngly entitled section of the Discussion. We also showed
esults obtained using a tilted frame approximation may no
ufficiently precise, even though the conditionve @ ) employed

n its derivation is satisfied.
We close by mentioning several areas for future research

xact product operator evolution of the density matrix during
rradiation of one nuclear species provides a detailed phy
icture ofJ-coupling modulation during RF pulses that has
een available previously, and this will be described at a later
he Cartesian product operator basis employed here is

ransformed to any alternate basis that might prove advanta
n analyzing an experiment (see, for example, (18) and reference
herein), so that the present results can be extended to in
nalysis of coherence pathways (19, 20) generated by complete
eneral RF waveforms. Since the formalism presented he
qually valid in the absence of either RF irradiation or the
ling, the solutions encompass any combination of arbitrar
aveforms, delays, and coherence gradients to provide a g
ethod for efficient pulse sequence simulation.

APPENDIX

lgorithm for Generating the Cayley–Klein Parameters

The evolution of the density operator from an initial timet 0

o a final timet k is determined by the time-evolution opera
(t k, t 0), which is composed of the individual rotation op
torsUq(t k, t 0) in each subspace according to Eq. [15].
olution for the density operator has been compiled in Ta
–4 in terms of the C–K parametersaq(t k) andbq(t k). These
arameters are obtained by successive application of the

ion operatorsUq(t k, t k21) defined in Eq. [13] for each of thek
ntervals of lengthDt between the initial and final times,
erived from the time-independent Hamiltonian for each in
te
ins

for
m
n

us-
ler
y

the

or
a
ts

e

-
at
e

he
F
al
t
te.
ily

ous

de

is
-
F
ral

s

ta-

r-

al. For each matrix multiplication, only the two first-ro
lements of the product matrix need to be computed, sinc
ther two elements can be obtained by complex conjuga
n efficient algorithm starts with

aq~t1! 5 aq
1, bq~t1! 5 bq

1, [A1]

s defined in Eq. [14] for eachaq
k andbq

k during thekth interval
k 2 t k21. For k . 2, the matrix products

Uq~tk, tk21!Uq~tk21, t0! 5 S aq
k bq

k

2bq
k* aq

k* D
3 S aq~tk21! bq~tk21!

2b*q~tk21! a*q~tk21!
D [A2]

hen give

aq~tk! 5 aq
k aq~tk21! 2 bq

k b*q~tk21!

5 coswq 2 in̂q,z sin wq

bq~tk! 5 aq
k bq~tk21! 1 bq

k a*q~tk21!

5 2~n̂q,y 1 in̂q, x!sin wq [A3]

or the rotation operatorUq(t k, t 0) in terms of the equivalen
ingle rotation 2w q(t k) about the axisn̂q(t k) for eachq, as
efined in Eq. [43].

xpansion Coefficientsanm
(q,r) in Eq. [24]

The solution for the density matrix in terms of its constitu
roduct operator states was obtained by expanding the pro
q2I xn

Ur
† (n 5 0, . . . , 3) aslinear combinations of the I-sp

perators

2I x0 5 S1 0
0 1D 2I x 5 S0 1

1 0D
2I y 5 S0 2i

i 0D 2I z 5 S1 0
0 21D [A4]

n the standard matrix representation. Using Eq. [13] or
A2] for the matrix representation of the rotation operatorUq in
he subspace, denoted byq, of the total propagator produc
esults of the form

Uq2I x0U r
† 5 S A0 B0

2B*0 A*0
D Uq2I xU r

† 5 S A1 B1

B*1 2A*1
D

Uq2I yU r
† 5 2iS A2 B2

2B*2 A*2
D Uq2I zU r

† 5 S A3 B3

B*3 2A*3
D ,

[A5]

ith the elementsA andB listed in Table 2 in terms of th
n n e
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ppropriate Cayley–Klein parameters and indices (q, r ). An
rbitrary 23 2 matrix

M 5 SA B
C DD [A6]

an be expanded as

M 5 A~I x0 1 I z! 1 B~I x 1 iI y! 1 C~I x 2 iI y! 1 D~I x0 2 I z!

5 ~ A 1 D!I x0 1 ~B 1 C!I x 1 i ~B 2 C!I y 1 ~ A 2 D!I z.

[A7]

or the matrices of Eq. [A5], we writew 1 w* 5 2 Re(w) and
2 w* 5 2i Im(w) for complexw to obtain the expressio

isted in Table 1. Alternatively,M can be expanded in terms
ny other suitable basis, resulting in corresponding mod

ions to the elements in Table 1.
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